Computation of the (n-1)-st Koszul homology of monomial ideals and related algorithms

Autor: Sáenz de Cabezón Irigaray, Eduardo; Bigatti, Anna M.; 

Tipo de documento: Capítulo de libro

Libro: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC

Año: 2009  Páginas: 31-37

Referencias:

  • Abbott, J., The design of cocoalib (2006) ICMS, pp. 205-215
  • Bigatti, A.M., Computation of Hilbert-Poincaré series (1997) Journal of Pure and Applied Algebra, 119 (3), pp. 237-253
  • Bigatti, A.M., De Sáenz Cabezón, E., (2008) (N-1)-st Koszul Homology and the Structure of Monomial Ideals, , http://arxiv.org/abs/0811.1013
  • Buchsbaum, D.A., A generalized Koszul complex. I (1964) Transactions of the American Mathematical Society, 111 (2), pp. 183-196
  • CoCoALib: A GPL C++ Library for Doing Computations in Commutative Algebra., , http://cocoa.dima.unige.it, Available at
  • Eisenbud, D., (1995) Commutative Algebra with a View Towards Algebraic Geometry, Volume 150 of Graduate Texts in Mathematics, , Springer, New York
  • Gao, S., Zhu, M., (2008) Computing Irreducible Decompositions of Monomial Ideals, , http://arxiv.org/abs/0811.3425
  • Grayson, D.R., Stillman, M.E., Macaulay 2, a Software System for Research in Algebraic Geometry., , http://www.math.uiuc.edu/Macaulay2/, Available at
  • Herzog, J., Vladoiu, M., Zheng, X., How to compute the Stanley depth of a monomial ideal Journal of Algebra, , To appear
  • Koszul, J.-L., Homologie et cohomologie des algebres de Lie (1950) Bulletin de la S. M. F., 78, pp. 65-127
  • Kreuzer, M., Robbiano, L., (2005) Computational Commutative Algebra 2., , Springer, Heidelberg
  • Miller, E., Sturmfels, B., (2004) Combinatorial Commutative Algebra, Volume 227 of Graduate Texts in Mathematics, , Springer, New York
  • Milowski, R.A., (2004) Computing Irredundant Irreducible Decompositions and the Scarf Complex of Large Scale Monomial Ideals, , Master's thesis, San Francisco State university
  • Roune, B.H., The slice algorithm for irreducible decomposition of monomial ideals Journal of Symbolic Computation, to Appear., , http://www.broune.com/, Available at
  • Sáenz-de-Cabezon, E., (2008) Combinatorial Koszul Homology: Computations and Applications, , http://arxiv.org/abs/0803.0421, PhD thesis, Univ. la Rioja, (Spain), Available at
  • Stanley, R.P., Hilbert functions of graded algebras (1978) Advances in Mathematics, 28, pp. 175-193
  • Sturmfels, B., White, N., Computing combinatorial decompositions of rings (1991) Combinatorica, 11, pp. 275-293
  • Villarreal, R., (2001) Monomial Algebras, Volume 238 of Pure and Applied Mathematics, , Marcel Dekker inc., New York