On the stability of equilibria in two degrees of freedom Hamiltonian systems under resonances.

Autor: Pascual Lería, Ana IsabelLanchares Barrasa, Victor; Elipe Sánchez, Antonio ; 

Tipo de documento: Artículo de revista

Revista: Journal of Nonlinear Science. ISSN: 0938-8974. Año: 2005. Número: 5. Volumen: 15. Páginas: 305-319.

doi 10.1007/s00332-004-0674-1Texto completo open access 

JCR:
Edición:
Science  Área: Mathematics, Applied  Quartil: Q1  Lugar área: 10/151  F. impacto: 1,556 
Edición:
Science  Área: Mechanics  Quartil: Q1  Lugar área: 13/110  F. impacto: 1,556 
Edición:
Science  Área: Physics, Mathematical  Quartil: Q2  Lugar área: 15/38  F. impacto: 1,556 

SCIMAGO:
SJR:
1,141  SNIP: 4,077 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Alfriend, T.K., The stability of the triangular Lagrangian points for commensurability of order two (1970) Celest. Mech., 1, pp. 351-359
  • Alfriend, T.K., The stability of the triangular Lagrangian points for commensurability of order three (1971) Celest. Mech., 4, pp. 60-77
  • Arnold, V.I., The stability of the equilibrium position of a Hamiltonian system of ordinary differential equations in the general elliptic case (1964) Soviet Math. Dokl., 2, pp. 247-249
  • Cabral, H.E., Meyer, K.R., Stability of equilibria and fixed points of conservative systems (1999) Nonlinearity, 12, pp. 1351-1362
  • Cabral, H.E., Normal forms of Hamiltonian systems and stability of equilibria (2002) Classical and Celestial Mechanics, pp. 117-169. , Cabral, H. E., and Diacu, F., eds Princeton Univ. Press., Princeton
  • Chetaev, N., (1961) The Stability of Motion, , Pergamon Oxford
  • Cushman, R.H., Bates, L.M., Global aspects of classical integrable systems (1997) Birkḧauser, , Berlin
  • Deprit, A., Deprit-Bartholom'e, A., Stability of the triangular lagrangian points (1967) Astron. J., 72, pp. 173-179
  • Deprit, A., Delaunay normalisations (1982) Celestial Mech, 26, pp. 9-21
  • Deprit, A., The lissajous transformation I (1991) Basics. Celest. Mech., 51, pp. 201-225
  • Deprit, A., Lóopez-Moratalla, T., Estabilidad orbital de sat'elites estacionarios (1996) Rev. Mat. Complutense, 9, pp. 311-333
  • Elipe Antonio, Deprit Andre, Oscillators in resonance (1999) Mechanics Research Communications, 26 (6), pp. 635-640
  • Elipe, A., Complete reduction of oscillators in resonance p: Q (2000) Phys. Rev. E, 61, pp. 6477-6484
  • Elipe, A., Lanchares, V., Lopez-Moratalla, T., Riaguas, A., Nonlinear stability in resonant cases: A geometrical approach (2001) Journal of Nonlinear Science, 11 (3), pp. 211-222
  • Gózdziewski, K., Stability of the triangular points in the unrestricted planar problem of a symmetric rigid body and a point mass (2003) Celest. Mech. &
  • Dynam. Astron., 85, pp. 79-103
  • Gustavson, F.G., On constructing formal integrals of a Hamiltonian system near an equilibrium point (1966) Astron. J., 71, pp. 670-686
  • Leontovich, A.M., On the stability of the lagrangian periodic solutions for the reduced problem of three bodies (1962) Soviet Math. Dokl., 3, pp. 425-430
  • Markeev, A.P., On the stability of the triangular libration points in the circular bounded three-body problem (1966) Appl. Math. Mech., 33, pp. 105-110
  • Markeev, A.P., Libration points in celestial mechanics and astrodynamics (1978) Nauka Moscow
  • Markeev, A.P., The problem of the stability of the equilibrium position of a Hamiltonian system at 3:1 resonance (2001) J. Appl. Math. Mech., 65, pp. 639-645
  • Markeev, A.P., Bardin, B., On the stability of planar oscillations and rotations of a satellite in a circular orbit (2003) Celest. Mech. &
  • Dynam. Astron., 85, pp. 51-66
  • Meyer, K.R., Schmidt, D.S., The stability of the lagrange triangular point and a theorem of Arnold (1986) J. Diff. Eq., 62, pp. 222-236
  • Palacian, J., Yanguas, P., Reduction of polynomial planar Hamiltonians with quadratic unperturbed part (2000) SIAM Review, 42 (4), pp. 671-691
  • Riaguas, A., Elipe, A., Lopez-Moratalla, T., Non-linear stability of the equilibria in the gravity field of a finite straight segment (2001) Celestial Mechanics and Dynamical Astronomy, 81 (3), pp. 235-248. , DOI 10.1023/A:1013217913585
  • Siegel, C.L., Moser, J.K., (1971) Lectures on Celestial Mechanics, , Springer Verlag, Berlin
  • Sokolsky, A.G., On the stability of a Hamiltonian system with two degrees of freedom in the case of equal frequencies (1974) Prikh. Mat. Mech., 38, pp. 791-799
  • Sokolsky, A.G., On the stability of an autonomous Hamiltonian system with two degrees of freedom at the resonance of the first order (1977) Prikh. Mat. Mech., 41, pp. 24-33
  • Sokolsky, A.G., On the stability of a Hamiltonian system with two degrees of freedom in the case of null characteristic exponents (1981) Prikh. Mat. Mech., 45, pp. 441-449