Jordan Trialgebras and Post-Jordan Algebras

Autor: Madariaga Merino, Sara; R. Bremner, Murray; Bagherzadeh, Fatemeh; 

Tipo de documento: Artículo de revista

Revista: Communications in Algebra. ISSN: 0092-7872. Año: 2017. Número: 486. Páginas: 360-395.

doi 10.1016/j.jalgebra.2017.04.022Texto completo open access 

SCIMAGO (datos correspondientes al año 2014):
SJR:
,769  SNIP: ,949 

CIRC: GRUPO A

Referencias:

  • Aguiar, M., Pre-Poisson algebras (2000) Lett. Math. Phys., 54 (4), pp. 263-277
  • Aymon, M., Grivel, P.-P., Un théorème de Poincaré–Birkhoff–Witt pour les algèbres de Leibniz (2003) Comm. Algebra, 31 (2), pp. 527-544
  • Bai, C., Bellier, O., Guo, L., Ni, X., Splitting of operations, Manin products, and Rota–Baxter operators (2013) Int. Math. Res. Not. IMRN, (3), pp. 485-524. , arXiv:1106.6080 [math.QA], (submitted 29 June 2011)
  • Bandiera, R., A trick to compute certain Manin products of operads arXiv:1602.08051 [math.QA], (submitted 25 February 2016)
  • Bergeron, N., Loday, J.-L., The symmetric operation in a free pre-Lie algebra is magmatic (2011) Proc. Amer. Math. Soc., 139 (5), pp. 1585-1597
  • Bloh, A., On a generalization of the concept of Lie algebra (1965) Dokl. Akad. Nauk SSSR, 165, pp. 471-473
  • Bokut, L.A., Chen, Y., Liu, C., Gröbner–Shirshov bases for dialgebras (2010) Internat. J. Algebra Comput., 20 (3), pp. 391-415
  • Bondari, S., Constructing the polynomial identities and central identities of degree <
  • 9 of 3×3 matrices (1997) Linear Algebra Appl., 258, pp. 233-249
  • Bremner, M.R., On the definition of quasi-Jordan algebra (2010) Comm. Algebra, 38 (12), pp. 4695-4704
  • Bremner, M.R., Dotsenko, V., Algebraic Operads: An Algorithmic Companion (2016), CRC Press Boca Raton
  • Bremner, M.R., Felipe, R., Sánchez-Ortega, J., Jordan triple disystems (2012) Comput. Math. Appl., 63 (6), pp. 1039-1055
  • Bremner, M.R., Madariaga, S., Special identities for the pre-Jordan product in the free dendriform algebra (2013) Linear Algebra Appl., 439 (2), pp. 435-454
  • Bremner, M.R., Madariaga, S., Peresi, L.A., Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions arXiv:1407.3810, (submitted 14 July 2014)
  • Bremner, M.R., Sánchez-Ortega, J., Self-dual nonsymmetric operads with two binary operations arXiv:1606.01982 [math.RA], (submitted 7 June 2016)
  • Chapoton, F., Un endofoncteur de la catégorie des opérades (2001) Dialgebras and Related Operads, Lecture Notes in Math., 1763, pp. 105-110. , Springer Berlin
  • Chapoton, F., On some anticyclic operads (2005) Algebr. Geom. Topol., 5, pp. 53-69
  • Chapoton, F., Livernet, M., Pre-Lie algebras and the rooted trees operad (2001) Int. Math. Res. Not. IMRN, (8), pp. 395-408
  • Clifton, J.M., A simplification of the computation of the natural representation of the symmetric group Sn (1981) Proc. Amer. Math. Soc., 83 (2), pp. 248-250
  • Cohn, P.M., On homomorphic images of special Jordan algebras (1954) Canad. J. Math., 6, pp. 253-264
  • Dotsenko, V., Griffin, J., Cacti and filtered distributive laws (2014) Algebr. Geom. Topol., 14 (6), pp. 3185-3225. , arXiv:1109.5345, (submitted on 25 September 2011)
  • Dotsenko, V., Khoroshkin, A., Gröbner bases for operads (2010) Duke Math. J., 153 (2), pp. 363-396
  • Dotsenko, V., Vallette, B., Higher Koszul duality for associative algebras (2013) Glasg. Math. J., 55, pp. 55-74
  • Ebrahimi-Fard, K., Loday-type algebras and the Rota–Baxter relation (2002) Lett. Math. Phys., 61 (2), pp. 139-147
  • Etherington, I.M.H., Non-associative powers and a functional equation (1937) Math. Gaz., 21 (242), pp. 36-39
  • Gerstenhaber, M., The cohomology structure of an associative ring (1963) Ann. of Math. (2), 78, pp. 267-288
  • Ginzburg, V., Kapranov, M., Koszul duality for operads (1994) Duke Math. J., 76 (1), pp. 203-272. , (Erratum)
  • Glennie, C.M., Some identities valid in special Jordan algebras but not valid in all Jordan algebras (1966) Pacific J. Math., 16, pp. 47-59
  • Goichot, F., Un théorème de Milnor–Moore pour les algèbres de Leibniz (2001) Dialgebras and Related Operads, Lecture Notes in Math., 1763, pp. 111-133. , Springer Berlin
  • Gubarev, V., Kolesnikov, P.S., Embedding of dendriform algebras into Rota–Baxter algebras (2013) Cent. Eur. J. Math., 11 (2), pp. 226-245
  • Gubarev, V., Kolesnikov, P.S., On the computation of Manin products for operads arXiv:1204.0894 [math.RA], (submitted 4 April 2012)
  • Hentzel, I.R., Processing identities by group representation (1977) Computers in Nonassociative Rings and Algebras, Special Session, 82nd Annual Meeting, Amer. Math. Soc., San Antonio, Texas, 1976, pp. 13-40. , Academic Press New York
  • Hou, D., Ni, X., Bai, C., Pre-Jordan algebras (2013) Math. Scand., 112 (1), pp. 19-48
  • Kolesnikov, P.S., Varieties of dialgebras, and conformal algebras (2008) Sib. Math. J., Sibirsk. Mat. Zh., 49 (2), pp. 322-339. , translation in
  • Kolesnikov, P.S., Algebras with operators, Koszul duality, and conformal algebras www.cs.du.edu/~petr/milehigh/2013/Kolesnikov.pdf, in: Third Mile High Conference on Nonassociative Mathematics, 11–17 August 2013, University of Denver, Colorado, USA. Slides:
  • Kolesnikov, P.S., Voronin, V.Y., On special identities for dialgebras (2013) Linear Multilinear Algebra, 61 (3), pp. 377-391
  • Loday, J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz (1993) Enseign. Math. (2), 39 (3-4), pp. 269-293
  • Loday, J.-L., Algèbres ayant deux opérations associatives (digèbres) (1995) C. R. Math. Acad. Sci. Paris, 321 (2), pp. 141-146
  • Loday, J.-L., Cup-product for Leibniz cohomology and dual Leibniz algebras (1995) Math. Scand., 77 (2), pp. 189-196
  • Loday, J.-L., Dialgebras. Dialgebras and Related Operads (2001) Lecture Notes in Math., 1763, pp. 7-66. , Springer Berlin
  • Loday, J.-L., Generalized bialgebras and triples of operads (2008) Astérisque, 320. , arXiv:math/0611885, (submitted 28 November 2006)
  • Loday, J.-L., Ronco, M.O., Hopf algebra of the planar binary trees (1998) Adv. Math., 139 (2), pp. 293-309
  • Loday, J.-L., Ronco, M.O., Trialgebras and families of polytopes (2004) Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Contemp. Math., 346, pp. 369-398. , Amer. Math. Soc. Providence
  • Loday, J.-L., Vallette, B., Algebraic Operads (2012) Grundlehren Math. Wiss., 346. , Springer Heidelberg
  • Madariaga, S., Gröbner–Shirshov bases for the non-symmetric operads of dendriform algebras and quadri-algebras (2014) J. Symbolic Comput., 60, pp. 1-14
  • Ni, X., (2016), Rota–Baxter Algebras, Renormalization on Kausz Compactifications, and Replicating of Binary Operads, PhD thesis, California Institute of Technology, Pasadena, California, USA. Defended 19 May
  • Pei, J., Bai, C., Guo, L., Ni, X., Replicating of binary operads, Koszul duality, Manin products and average operators arXiv:1212.0177, (submitted 2 December 2012)
  • Rutherford, D.E., Substitutional Analysis (1948), University Press Edinburgh
  • Vallette, B., Homology of generalized partition posets (2007) J. Pure Appl. Algebra, 208 (2), pp. 699-725
  • Vallette, B., Manin products, Koszul duality, Loday algebras and Deligne conjecture (2008) J. Reine Angew. Math., 620, pp. 105-164
  • Velásquez, R., Felipe, R., Quasi-Jordan algebras (2008) Comm. Algebra, 36 (4), pp. 1580-1602
  • Vinberg, E.B., Convex homogeneous domains (1961) Dokl. Akad. Nauk SSSR, 141, pp. 521-524
  • Wedderburn, J.H.M., The functional equation g(x2)=2αx+[g(x)]2 (1922) Ann. of Math. (2), 24 (2), pp. 121-140
  • Zhevlakov, K.A., Slinko, A.M., Shestakov, I.P., Shirshov, A.I., Rings That Are Nearly Associative (1982) Pure Appl. Math., 104. , Academic Press, Inc. New York, London Translated from Russian by Harry F. Smith