Permutation of elements in double semigroups

Autor: Madariaga Merino, Sara; R. Bremner, Murray; 

Tipo de documento: Artículo de revista

Revista: Semigroup Forum. ISSN: 0037-1912. Año: 2016. Número: 2. Volumen: 92. Páginas: 335-360.

Texto completo open access 

CIRC: GRUPO A

Referencias:

  • Acerbi, F., On the shoulders of Hipparchus: a reappraisal of ancient Greek combinatorics (2003) Arch. Hist. Exact Sci., 57 (6), pp. 465-502
  • Ackerman, E., Barequet, G., Pinter, R., Romik, D., The number of guillotine partitions in d dimensions (2006) Inform. Process. Lett., 98 (4), pp. 162-167
  • Asinowski, A., Barequet, G., Mansour, T., Pinter, R., Cut equivalence of d-dimensional guillotine partitions (2014) Discret. Math., 331, pp. 165-174
  • Berge, C., (2001) The Theory of Graphs. Translated from the 1958 French edition by Alison Doig. Second printing of the 1962 first English edition, , Dover Publications, Mineola, NY
  • Brown, R., Higher-dimensional group theory. Low-dimensional Topology (Bangor, 1979), pp. 215–238 (1982) London Mathematical Society Lecture Note Series, 48. , Cambridge University Press, Cambridge
  • Brown, R., From groups to groupoids: a brief survey (1987) Bull. Lond. Math. Soc., 19 (2), pp. 113-134
  • Coker, C., A family of eigensequences (2004) Discret. Math., 282 (1-3), pp. 249-250
  • Deutsch, E., A bijective proof of the equation linking the Schröder numbers, large and small (2001) Discret. Math., 241 (1-3), pp. 235-240
  • DeWolf, D., On Double Inverse Semigroups. Master’s Thesis. Dalhousie University (2013), 93. , Halifax, NS, CanadaEckmann, B., Hilton, P. J.: Group-like structures in general categories. I. Multiplications and comultiplications. Math. Ann. 145, 227–255 (1961/1962)Foata, D., Zeilberger, D., A classic proof of a recurrence for a very classical sequence (1997) J. Combin. Theory Ser. A, 80 (2), pp. 380-384
  • Habsieger, L., Kazarian, M., Lando, S., On the second number of Plutarch (1998) Am. Math. Month., 105 (5), p. 446
  • Kock, J., Note on commutativity in double semigroups and two-fold monoidal categories (2007) J. Homotopy Relat. Struct., 2 (2), pp. 217-228
  • Loday, J.-L., Vallette, B., (2012) Algebraic Operads. Grundlehren der Mathematischen Wissenschaften, , 346, Springer, Heidelberg
  • MacLane, S., Natural associativity and commutativity (1963) Rice Univ. Stud., 49 (4), pp. 28-46
  • MacLane, S., (1998) Categories for the Working Mathematician. Graduate Texts in Mathematics, , 5, Springer, New York
  • www.cs.unm.edu/mccune/mace4/, McCune, W.: Prover9, an automated theorem prover for first-order and equational logicPadmanabhan, R., Penner, R., An implication basis for linear forms (2006) Algebra Univ., 55 (2-3), pp. 355-368
  • Schröder, E., Vier kombinatorische Probleme (1870) Zeitschrift für Mathematik und Physik XV, pp. 361-376. , http://gdz.sub.uni-goettingen.de/dms/load/toc/?PPN=PPN599415665
  • Shapiro, L.W., Sulanke, R.A., Bijections for the Schröder numbers (2000) Math. Mag., 73 (5), pp. 369-376
  • Simpson, C., (2012) New Mathematical Monographs, , Homotopy Theory of Higher Categories. New Mathematical Monographs, 19, Cambridge University Press, Cambridge
  • Stanley, R.P., Hipparchus, Plutarch, Schröder, and Hough (1997) Am. Math. Month., 104 (4), pp. 344-350
  • Stanley, R.P., (1999) Enumerative Combinatorics, Volume 2. Combinatorics. Cambridge studies in advanced mathematics, vol. 62, 2. , Cambridge University Press, Cambridge
  • Zinbiel, G.W., (pseudonym of Loday, J.-L.): Encyclopedia of types of algebras 2010.Operads and Universal Algebra, pp. 217–297 (2012) Nankai Series in Pure and Applied Mathematics and Theoretical Physics, 9. , World Scientific Publishing, Hackensack, NJ