Multi-revolution perturbed Lambert’s problem

Autor: Armellin , Roberto; Gondelach, D.; San Juan Díaz, Juan Félix

Tipo de documento: Capítulo de libro

Libro: Space Flight Mechanics Meeting, 2018

Año: 2018 

Referencias:

  • Gauss, C.F., Davis, C.H., (2004) Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, , Courier Corporation
  • Gooding, R., A procedure for the solution of Lambert’s orbital boundary-value problem (1990) Celestial Mechanics and Dynamical Astronomy, 48 (2), pp. 145-165
  • Arora, N., Russell, R.P., A fast and robust multiple revolution Lambert algorithm using a cosine transformation (2013) Paper AAS, 13, p. 728
  • Prussing, J.E., A class of optimal two-impulse rendezvous using multiple-revolution lambert solutions. (2000) Journal of Astronautical Sciences, 48 (2), pp. 131-148
  • Engels, R., Junkins, J., The gravity-perturbed Lambert problem: A KS variation of parameters approach (1981) Celestial Mechanics and Dynamical Astronomy, 24 (1), pp. 3-21
  • Bai, X., Junkins, J.L., Modified Chebyshev-Picard iteration methods for solution of initial value problems (2012) The Journal of the Astronautical Sciences, 59 (1-2), pp. 327-351
  • Woollands, R.M., Younes, A.B., Junkins, J.L., New solutions for the perturbed lambert problem using regularization and picard iteration (2015) Journal of Guidance, Control, and Dynamics
  • Der, G.J., (2011) The Superior Lambert Algorithm, , AMOS, Maui, Hawaii
  • Yang, Z., Luo, Y.-Z., Zhang, J., Tang, G.-J., Homotopic perturbed Lambert algorithm for long-duration rendezvous optimization (2015) Journal of Guidance, Control, and Dynamics
  • Woollands, R.M., Read, J.L., Probe, A.B., Junkins, J.L., Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration The Journal of the Astronautical Sciences, 2016, pp. 1-18
  • Berz, M., (1999) Differential Algebraic Techniques, Entry in Handbook of Accelerator Physics and Engineering, , World Scientific, New York
  • Wittig, A., Di Lizia, P., Armellin, R., Makino, K., Bernelli-Zazzera, F., Berz, M., Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting (2015) Celestial Mechanics and Dynamical Astronomy, 122 (3), pp. 239-261. , http://dx.doi.org/10.1007/s10569-015-9618-3
  • Aksnes, K., On the use of the hill variables in artificial satellite theory: Brouwer’s Theory (1972) Astronomy and Astrophysics, 17, pp. 70-75
  • Jezewski, D.J., (1975) Primer Vector Theory and Applications, , Technical report, Lyndon B. Johnson Space Center, NASA
  • Berz, M., (1999) Differential Algebraic Techniques, Entry in Handbook of Accelerator Physics and Engineering, , World Scientific, New York
  • Berz, M., (1986) The New Method of TPSA Algebra for the Description of Beam Dynamics to High Orders, Los Alamos National Laboratory, , Technical Report AT-6:ATN-86-16
  • Berz, M., The method of power series tracking for the mathematical description of beam dynamics (1987) Nuclear Instruments and Methods, 258
  • Berz, M., (1999) Modern Map Methods in Particle Beam Physics, , Academic Press
  • Berz, M., Makino, K., (2006) COSY INFINITY Version 9 Reference Manual, , Michigan State University, East Lansing, MI 48824,. MSU Report MSUHEP060803
  • Rasotto, M., Morselli, A., Wittig, A., Massari, M., Di Lizia, P., Armellin, R., Valles, C., Differential Algebra Space Toolbox for Nonlinear Uncertainty Propagation in Space Dynamics (2016) 6Th International Conference on Astrodynamics Tools and Techniques, ICATT 2016. Proceedings of The, pp. 1-11
  • Di Lizia, P., Armellin, R., Lavagna, M., Application of high order expansions of two-point boundary value problems to astrodynamics (2008) Celestial Mechanics and Dynamical Astronomy, 102 (4), pp. 355-375
  • Valli, M., Armellin, R., Di Lizia, P., Lavagna, M., Nonlinear mapping of uncertainties in celestial mechanics (2012) Journal of Guidance, Control, and Dynamics, 36 (1), pp. 48-63
  • San-Juan, J.F., López, L.M., López, R., MathATESAT: A symbolic-numeric environment in Astrodynamics and Celestial Mechanics (2011) Lecture Notes in Computer Science, 6783 (2), pp. 436-449
  • Deprit, A., Delaunay normalisations (1982) Celestial Mechanics and Dynamical Astronomy, 26 (1), pp. 9-21
  • Lara, M., Efficient Formulation of the Periodic Corrections in Brouwer’s Gravity Solution (2015) Mathematical Problems in Engineering, 2015, p. 9
  • (2014) The Mathworks Inc., p. 2014. , Natick, Massachusetts
  • Lawden, D.F., (1963) Optimal Trajectories for Space Navigation, , Butterworths
  • Armellin, R., San-Juan, J.F., Lara, M., End-of-life disposal of high elliptical orbit missions: The case of INTEGRAL (2015) Advances in Space Research, 56 (3), pp. 479-493