Development and validation of a new methodology to assess the vineyard water status by on-the-go near infrared spectroscopy

Autor: Diago Santamaría, María PazFernández Novales, JuanGutiérrez Salcedo, SalvadorMarañón Grandes, MiguelTardáguila Laso, Javier

Tipo de documento: Artículo de revista

Revista: Frontiers in Plant Science. ISSN: 1664-462X. Año: 2018. Volumen: 9.

doi 10.3389/fpls.2018.00059


  • Acevedo-Opazo, C., Ortega-Farias, S., Fuentes, S., Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation (2010) Agric. Water Manage., 97, pp. 956-964
  • Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., Ojeda, H., The potential of high spatial resolution information to define within-vineyard zones related to vine water status (2008) Precis. Agric., 9, pp. 285-302
  • Ballester, C., Buesa, I., Bonet, L., Intrigliolo, D.S., Usefulness of stem dendrometers as continuous indicator of loquat trees water status (2014) Agric. Water Manag., 142, pp. 110-114
  • Baluja, J., Diago, M.P., Balda, P., Zorer, R., Meggio, F., Morales, F., Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV) (2012) Irrig. Sci., 30, pp. 511-522
  • Barnes, R.J., Dhanoa, M.S., Lister, S.J., Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra (1989) Appl. Spectrosc., 43, pp. 772-777
  • Bellvert, J., Marsal, J., Girona, J., Gonzalez-Dugo, V., Fereres, E., Ustin, S.L., Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and Saturn peach orchards (2016) Remote Sens, 8, p. 39
  • Brereton, R.G., (2003) Principal Component Analysis: The Method, pp. 191-223. , Chemometrics. Data Analysis for the Laboratory and Chemical Plant, ed R. G. Brereton (Chichester: John Wiley and Sons, Ltd.)
  • Chapman, D.M., Roby, G., Ebeler, S.E., Guinard, J.X., Matthews, M.A., Sensory attributes of cabernet sauvignon wines made from vines with different water status (2005) Austr. J. Grape Wine Res., 11, pp. 339-347
  • Chaves, M.M., Santos, T.P., Souza, C.R.D., Ortu-O, M.F., Rodrigues, M.L., Lopes, C.M., Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality (2007) Ann. Appl. Biol., 150, pp. 237-252
  • Choné, X., Van Leeuwen, C., Dubourdieu, D., Gaudillère, J.P., Stem water potential is a sensitive indicator of grapevine water status (2001) Ann. Bot., 87, pp. 477-483
  • Cohen, Y., Alchanatis, V., Saranga, Y., Rosenberg, O., Sela, E., Bosak, A., Mapping water status based on aerial thermal imagery: Comparison of methodologies for upscaling from a single leaf to commercial fields (2017) Precis. Agric., (5), pp. 801-822
  • Cozzolino, D., An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals (2014) Food Res. Int., 60, pp. 262-265
  • Cozzolino, D., Cynkar, W.U., Shah, N., Smith, P., Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality (2011) Food Res. Int., 44, pp. 1888-1896
  • Dambergs, R., Gishen, M., Cozzolino, D., A review of the state of the art, limitations, and perspectives of infrared spectroscopy for the analysis of wine grapes, must, and grapevine tissue (2015) Appl. Spectrosc. Rev., 50, pp. 261-278
  • De Bei, R., Cozzolino, D., Sullivan, W., Cynkar, W., Fuentes, S., Dambergs, R., Non-destructive measurement of grapevine water potential using near infrared spectroscopy (2011) Aust. J. Grape Wine Res., 17, pp. 62-71
  • Dhanoa, M.S., Lister, S.J., Barnes, R.J., On the scales associated with near-infrared reflectance difference spectra (1995) Appl. Spectrosc., 49, pp. 765-772
  • Diago, M.P., Bellincontro, A., Scheidweiler, M., Tardaguila, J., Tittmann, S., Stoll, M., Future opportunities of proximal near infrared sensing approaches to determine vine water (2017) Aust. J. Grape Wine Res, 23, pp. 409-414
  • Fernández, J.E., Plant-based sensing to monitor water stress: Applicability to commercial orchards (2014) Agric. Water Manag., 142, pp. 99-109
  • Fernández, J.E., Cuevas, M.V., Irrigation scheduling from stem diameter variations: A review (2010) Agric. For. Meteorol., 150, pp. 135-151
  • Fernández-Novales, J., Tardaguila, J., Gutiérrez, S., Marañón, M., Diago, M.P., In field quantification and discrimination of different vineyard water regimes by on-the-go NIR spectroscopy (2018) Biosyst. Eng., 165, pp. 47-58
  • Fuentes, S., De Bei, R., Pech, J., Tyerman, S., Computational water stress indices obtained from thermal image analysis of grapevine canopies (2012) Irrig. Sci., 30, pp. 523-536
  • García-Tejero, I.F., Costa, J.M., Egipto, R., Durán-Zuazo, V.H., Lima, R.S.N., Lopes, C.M., Thermal data to monitor crop-water status in irrigated Mediterranean viticulture (2016) Agric. Water Manag., 176, pp. 80-90
  • Geladi, P., Manley, M., Lestander, T., Scatter plotting in multivariate data analysis (2003) J. Chemometr., 17, pp. 503-511
  • Gutiérrez, S., Diago, M.P., Fernández-Novales, J., Tardaguila, J., (2017) On-The-Go Thermal Imaging for Water Status Assessment in Commercial Vineyards, pp. 520-524. , Advances in Animal Biosciences Precision Agriculture, Vol. 8, (Edinburgh, UK: ECPA)
  • Gutiérrez, S., Tardaguila, J., Fernández-Novales, J., Diago, M.P., Data mining and NIRspectroscopy in viticulture: Applications for plant phenotyping under field conditions (2016) Sensors, 16, p. 236
  • Hanson, H.C., Leaf-structure as related to environment (1917) Am. J. Bot., 4, pp. 533-560
  • Hinkelmann, K., Kempthorne, O., (2007) Andomized Block Designsm, pp. 277-372. ,, Design and Analysis of Experiments, 2nd Edn (Hoboken, NJ: John Wiley &
  • Sons, Inc.), Available online at
  • Hotelling, H., A generalisation of student’s ratio (1931) Ann. Math. Stat, 2, pp. 360-378
  • Idso, S.B., Jackson, R.D., Pinter, P.J., Reginato, R.J., Hatfield, J.L., Normalizing the stress-degree-day parameter for environmental variability (1981) Agric. Meteorol., 24, pp. 45-55
  • Jackson, E.J., (2003) A User’s Guide to Principal Components, , NewYork, NY: John Wiley &
  • Sons, In
  • Jones, H.G., Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling (1999) Agric. For. Meteorol., 95, pp. 139-149
  • Jones, H.G., Irrigation scheduling: Advantages and pitfalls of plant-based methods (2004) J. Exp. Bot., 55, pp. 2427-2436
  • Jones, H.G., Grant, O.M., (2016) Remote Sensing and Other Imaging Technologies to Monitor Grapevine Performance, pp. 179-196. , Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective,eds H. Gerós, M. M. Chaves, H. Medrano, and S. Delrot (Chichester: Wiley-Blackwell)
  • Jones, H.G., Stoll, M., Santos, T., De Sousa, C., Chaves, M.M., Grant, O.M., Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine (2002) J. Exp. Bot., 53, pp. 2249-2260
  • Lo Gullo, M.A., Salleo, S., Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions (1988) Newphytol, 108, pp. 267-276
  • Nicolaï, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I., Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review (2007) Postharvest Biol. Technol., 46, pp. 99-118
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., Deloire, A., Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv (2002) Shiraz. Am. J. Enol. Vit., 53, pp. 261-267
  • Poblete-Echeverría, C., Ortega-Farías, S., Lobos, G.A., Romero, S., Ahumada, L., Escobar, A., Non-invasive method to monitor plant water potential of an olive orchard using visible and near infrared spectroscopy analysis (2014) Acta Hortic, pp. 363-368
  • Rodriguez-Dominguez, C.M., Ehrenberger, W., Sann, C., Rüger, S., Sukhorukov, V., Martín-Palomo, M.-J., Concomitant measurements of stemsap flow and leaf turgor pressure in olive trees using the leaf patch clamp pressure probe (2012) Agric. Water Manag., 114, pp. 50-58
  • Santos, A.O., Kaye, O., Grapevine leaf water potential based upon near infrared spectroscopy (2009) Sci. Agric., 66, pp. 287-292
  • Savitzky, A., Golay, M.J.E., Smoothing and Differentiation of data by simplified least squares procedures (1964) Anal. Chem., 36, pp. 1627-1639
  • Slaton, M.R., Hunt, E.R., Smith, W.K., Estimating near-infrared leaf reflectance from leaf structural characteristics (2001) Am. J. Bot, 88, pp. 278-284
  • Tardaguila, J., Fernández-Novales, J., Gutiérrez, S., Diago, M.P., Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer (2017) J. Sci. Food Agric., 97, pp. 3772-3780
  • Van Leeuwen, C., Tregoat, O., Choné, X., Bois, B., Pernet, D., Gaudillére, J.-P., Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. Howcan it be assessed for vineyard management purposes? (2009) J. Int. Sci. Vigne Vin., 43, pp. 121-134
  • Vila, H., Hugalde, I., Di Filippo, M., Estimation of leaf water potential by thermographic and spectral measurements in grapevine (2011) RIA, 37, pp. 46-52
  • Williams, L.E., (2000) Grapevine Water Relations, pp. 121-126. , Raisin Production Manual ed L. P. Christensen (Oakland, CA: University of California)
  • Williams, P., Norris, K., (2001) Near-Infrared Technology in the Agricultural and Food Industries. St, , Paul, MN: American Association of Cereal Chemists
  • Wold, S., Sjöström, M., Eriksson, L., PLS-regression: A basic tool of chemometrics (2001) Chemometr. Intell. Lab. Syst., 58, pp. 109-130