vitisBerry: An Android-smartphone application to early evaluate the number of grapevine berries by means of image analysis

Autor: Aquino Martín, Arturo; Barrio, I.; Diago Santamaría, María PazMillán Prior, BorjaTardáguila Laso, Javier

Tipo de documento: Artículo de revista

Revista: Computers and Electronics in Agriculture. ISSN: 0168-1699. Año: 2018. Volumen: 148. Páginas: 19-28.

doi 10.1016/j.compag.2018.02.021

SCIMAGO (datos correspondientes al año 2014):
SJR:
,895  SNIP: 1,997 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Aquino, A., Millan, B., Gastón, D., Diago, M.P., Tardáguila, J., VitisFlower®: development and testing of a novel android-smartphone application for assessing the number of grapevine flowers per inflorescence using artificial vision techniques (2015) Sensors-Basel, 15, pp. 21204-21218
  • Aquino, A., Millan, B., Gutiérrez, S., Tardáguila, J., Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis (2015) Comput. Electron. Agric., 119, pp. 92-104
  • Aquino, A., Diago, M.P., Millan, B., Tardáguila, J., A new methodology for estimating the grapevine-berry number per cluster using image analysis (2016) Biosyst. Eng., 156, pp. 80-95
  • Baggiolini, M., Stades repères de l'abricotier (1952) Revue Romande d'Agriculture, de Viticulture et d'Arboriculture, 8, pp. 28-29
  • Berenstein, R., Shahar, O.B., Shapiro, A., Edan, Y., Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer (2010) Intel. Serv. Robot., 3 (4), pp. 233-243
  • Connolly, C., Fliess, T., A study of efficiency and accuracy in the transformation from RGB to CIELAB color space (1997) IEEE Trans. Image Process., 6, pp. 1046-1047
  • Cubero, S., Diago, M.P., Blasco, J., Tardaguila, J., Prats-Montalbán, J.M., Ibáñez, J., A new method for assessment of bunch compactness using automated image analysis (2015) Aust. J. Grape Wine Res., 21, pp. 101-109
  • De Bei, R., Hook, J., Fuentes, S., Gilliham, M., Tyerman, S., Collins, C., (2015), pp. 585-588. , Linking canopy architecture to grape quality using the LAI Canopy App. In: Proceedings of the 19th International Meeting of Viticulture GIESCO, Montpellier, France
  • Diago, M.P., Correa, C., Millán, B., Barreiro, P., Valero, C., Tardaguila, J., Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions (2012) Sensors-Basel, 12, pp. 16988-17006
  • Diago, M.P., Tardaguila, J., Aleixos, N., Millan, B., Prats-Montalbán, J.M., Cubero, S., Assessment of cluster yield components by image analysis (2015) J. Sci. Food Agric., 95, pp. 1274-1282
  • Diago, M.P., Krasnow, M., Bubola, M., Millan, B., Tardaguila, J., Assessment of vineyard canopy porosity using machine vision (2016) Am. J. Enol. Viticult., 67, pp. 229-238
  • Dunstone, R.J., (2002), p. 19. , Winegrape crop forecasting module. In: Final Report for Project DNR 02/02, Adelaida, Australia
  • Fernández, R., Montes, H., Salinas, C., Sarria, J., Armada, M., Combination of RGB and multispectral imagery for discrimination of cabernet sauvignon grapevine elements (2013) Sensors-Basel, 13, pp. 7838-7859
  • Font, D., Tresanchez, M., Martínez, D., Moreno, J., Clotet, E., Palacín, J., Vineyard yield estimation based on the analysis of high resolution images obtained with artificial illumination at night (2015) Sensors-Basel, 15, pp. 8284-8301
  • Fuentes, S., de Bei, R., Pozo, C., Tyerman, S., Development of a smartphone application to characterise temporal and spatial canopy architecture and leaf area index for grapevines (2012) Wine Viticult. J., 27, pp. 56-60
  • Gonzalez, R.C., Woods, R.E., Digital Image Processing (2003), 3rd ed Prentice Hall Upper Saddle River, New Jersey, USA
  • Herzog, K., Roscher, R., Wieland, M., Kicherer, A., Läbe, T., Förstner, W., Initial steps for high-throughput phenotyping in vineyards (2014) Vitis, 53, pp. 1-8
  • Houle, D., Govindaraju, D.R., Omholt, S., Phenomic: the next challenge (2010) Nat. Rev. Genet., 11, pp. 855-866
  • Hu, M.K., (1962), Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory, IT-8, 179–187
  • Klodt, M., Herzog, K., Töpfer, R., Cremers, D., Field phenotyping of grapevine growth using dense stereo reconstruction (2015) BMC Bioinf., 16, p. 143
  • Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development (2004), 3rd ed Prentice Hall Upper Saddle River, New Jersey, USA
  • Li, L., Zhang, Q., Huang, D., A review of imaging techniques for plant phenotyping (2014) Sensors-Basel, 14, pp. 20078-20111
  • Liu, S., Marden, S., Whitty, M., (2013), Towards automated yield estimation in viticulture. In: Proceedings of the Australasian Conference on Robotics and Automation, Sydney, Australia
  • Liu, S., Whitty, M., Cossel, S., (2015), A lightweight method for grape berry counting based on automated 3D bunch reconstruction from a single image. In: Proceedings of the Workshop on Robotics in Agriculture, Seattle, USA
  • Millan, B., Aquino, A., Diago, M.P., Tardaguila, J., Image analysis-based modelling for flower number estimation in grapevine (2016) J. Sci. Food Agric., 97 (3), pp. 784-792
  • Minervini, M., Scharr, H., Tsaftaris, S., Image analysis: the new bottleneck in plant phenotyping [Applications corner] (2015) IEEE Signal Process Mag., 32, pp. 126-131
  • Nobuyuki, O., A threshold selection method from gray-level histograms (1979) IEEE Trans Syst Man Cyb, 9, pp. 62-66
  • Nuske, S., Achar, S., Bates, T., Narasimhan, S.G., Singh, S., Yield estimation in vineyards by visual grape detection (2011) IEEE/RSJ International Conference On Intelligent Robots and Systems, pp. 2352-2358. , IEEE San Francisco, California, USA
  • Nuske, S., Achar, S., Bates, T., Narasimhan, S.G., Singh, S., Visual Yield Estimation in Vineyards: Experiments with Different Varietals and Calibration Procedures (CMU-RI-TR-11-39) (2011), Robotics Institute, Carnegie Mellon University Pittsburgh, Pennsylvania, USA
  • Nuske, S., Gupta, K., Narasihman, S., Singh, S., (2012), Modeling and calibration visual yield estimates in vineyards. In: Proceedings of the 8th International Conference on Field and Service Robotics, Matsushima, Miyagi, Japan
  • Nuske, S., Wilshusen, K., Achar, S., Yoder, L., Narasimhan, S., Singh, S., Automated visual yield estimation in vineyards (2014) J. Field Rob., 31, pp. 837-860
  • Rabatel, G., Guizard, C., (2007), pp. 581-587. , Grape berry calibration by computer vision using elliptical model fitting. In: Proceedings of the 6th European Conference on Precision Agriculture, Skiathos, Greece
  • Reis, M.C., Morais, R., Pereira, C., Soares, S., Valente, A., Baptista, J., (2011), pp. 19-26. , Automatic detection of white grapes in natural environment using image processing. In: Proceedings of the 6th International Conference on Soft Computing Models in Industrial and Environmental Applications, Salamanca, Spain
  • Reis, M.J.C.S., Morais, R., Peres, E., Pereira, C., Contente, O., Soares, S., Automatic detection of bunches of grapes in natural environment from color images (2012) J. Appl. Logic, 10 (4), pp. 285-290
  • Smith, W.J., Modern Optical Engineering. The Design of Optical Systems- (2007), 4th ed. McGraw-Hill Education – Europe NY City, USA
  • Soille, P., Morphological Image Analysis. Principles and Applications (2004), 2nd ed. Springer – Verlag Berlin, Germany
  • Spalding, E.P., Miller, N.D., Image analysis is driving a renaissance in growth measurement (2013) Curr. Opin. Plant Biol., 16, pp. 100-104
  • Tukey, J., Comparing individual means in the analysis of variance (1949) Biometrics, 5, pp. 99-114