Subproteomic signature comparison of in vitro selected fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B

Autor: Correia, S.; Hébraud, M.; Chafsey, I.; Chambon, C.; Viala, D.; Torres Manrique, Carmen; Caniça, M.; Capelo, J.L.; Poeta, P.; Igrejas, G.; 

Tipo de documento: Artículo de revista

Revista: Expert Review of Proteomics. ISSN: 1478-9450. Año: 2017. Número: 10. Volumen: 14. Páginas: 941-961.

doi 10.1080/14789450.2017.1375856

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Aldred, K.J., Kerns, R.J., Osheroff, N., Mechanism of quinolone action and resistance (2014) Biochemistry, 53 (10), pp. 1565-1574
  • Goswami, M., Subramanian, M., Kumar, R., Involvement of antibiotic efflux machinery in glutathione-mediated decreased ciprofloxacin activity in Escherichia coli (2016) Antimicrob Agents Chemother, 60 (7), pp. 4369-4374. , et al
  • Fair, R.J., Tor, Y., Antibiotics and bacterial resistance in the 21st century (2014) Perspect Medicin Chem, 6, pp. 25-64
  • (2015) WHO Model List of Essential Medicines, 19th List, , World Health Organization,. Geneva
  • (2014) Antimicrobial resistance: global report on surveillance, , Geneva: World Health Organization
  • (2013) Antibiotic Resistance Threats in the United States, 2013, , Atlanta: Centers for Disease Control and Prevention
  • Majowicz, S.E., Musto, J., Scallan, E., The global burden of nontyphoidal Salmonella gastroenteritis (2010) Clin Infect Dis, 50 (6), pp. 882-889. , et al
  • Iwamoto, M., Salmonellosis (Nontyphoidal) (2016) CDC Health Information for International Travel 2016, , New York: Oxford University Press,. In: Brunette GW, editor
  • Hopkins, K.L., Davies, R.H., Threlfall, E.J., Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments (2005) Int J Antimicrob Agents, 25 (5), pp. 358-373
  • Lin, D., Chen, K., Wai-Chi Chan, E., Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations (2015) Sci Rep, 5, p. 14754. , et al
  • Leekitcharoenphon, P., Hendriksen, R.S., Le Hello, S., Global genomic epidemiology of Salmonella enterica Serovar Typhimurium DT104 (2016) Appl Environ Microbiol, 82 (8), pp. 2516-2526. , et al
  • Mather, A.E., Reid, S.W., Maskell, D.J., Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts (2013) Science, 341 (6153), pp. 1514-1517. , et al
  • Correia, S., Nunes-Miranda, J.D., Pinto, L., Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain (2014) Int J Mol Sci, 15 (8), pp. 14191-14219. , et al
  • Lan, R., Reeves, P.R., Octavia, S., Population structure, origins and evolution of major Salmonella enterica clones (2009) Infect Genet Evol, 9 (5), pp. 996-1005
  • Threlfall, E.J., Epidemic Salmonella typhimurium DT 104–a truly international multiresistant clone (2000) J Antimicrob Chemother, 46 (1), pp. 7-10
  • Colobatiu, L., Tabaran, A., Flonta, M., First description of plasmid-mediated quinolone resistance determinants and beta-lactamase encoding genes in non-typhoidal Salmonella isolated from humans, one companion animal and food in Romania (2015) Gut Pathog, 7, p. 16. , et al
  • Redgrave, L.S., Sutton, S.B., Webber, M.A., Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success (2014) Trends Microbiol, 22 (8), pp. 438-445. , et al
  • Vranakis, I., Goniotakis, I., Psaroulaki, A., Proteome studies of bacterial antibiotic resistance mechanisms (2014) J Proteomics, 97, pp. 88-99. , et al
  • Hernandez, A., Sanchez, M.B., Martinez, J.L., Quinolone resistance: much more than predicted (2011) Front Microbiol, 2, p. 22
  • Suzuki, S., Horinouchi, T., Furusawa, C., Prediction of antibiotic resistance by gene expression profiles (2014) Nat Commun, 5, p. 5792
  • Oz, T., Guvenek, A., Yildiz, S., Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution (2014) Mol Biol Evol, 31 (9), pp. 2387-2401. , et al
  • Toprak, E., Veres, A., Michel, J.B., Evolutionary paths to antibiotic resistance under dynamically sustained drug selection (2012) Nat Genet, 44 (1), pp. 101-105. , et al
  • Da Costa, J.P., Carvalhais, V., Ferreira, R., Proteome signatures-how are they obtained and what do they teach us? (2015) Appl Microbiol Biotechnol, 99 (18), pp. 7417-7431. , et al
  • Park, A.J., Krieger, J.R., Khursigara, C.M., Survival proteomes: the emerging proteotype of antimicrobial resistance (2016) FEMS Microbiol Rev, 40 (3), pp. 323-342
  • Perez-Llarena, F.J., Bou, G., Proteomics as a tool for studying bacterial virulence and antimicrobial resistance (2016) Front Microbiol, 7, p. 410
  • Burchmore, R., Mapping pathways to drug resistance with proteomics (2014) Expert Rev Proteomics, 11 (1), pp. 1-3
  • Lima, T.B., Pinto, M.F., Ribeiro, S.M., Bacterial resistance mechanism: what proteomics can elucidate (2013) Faseb J, 27 (4), pp. 1291-1303. , et al
  • Lin, X.M., Yang, M.J., Li, H., Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli (2014) J Proteomics, 98, pp. 244-253. , et al
  • Piras, C., Soggiu, A., Greco, V., Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog (2015) J Proteomics, 127, pp. 365-376. , et al
  • Zhou, J., Hao, D., Wang, X., An important role of a “probable ATP-binding component of ABC transporter” during the process of Pseudomonas aeruginosa resistance to fluoroquinolone (2006) Proteomics, 6 (8), pp. 2495-2503. , et al
  • Lin, X., Wang, C., Guo, C., Differential regulation of OmpC and OmpF by AtpB in Escherichia coli exposed to nalidixic acid and chlortetracycline (2012) J Proteomics, 75 (18), pp. 5898-5910. , et al
  • Li, P., Liu, X., Li, H., Downregulation of Na(+)-NQR complex is essential for Vibrio alginolyticus in resistance to balofloxacin (2012) J Proteomics, 75 (9), pp. 2638-2648. , et al
  • Vranakis, I., De Bock, P.J., Papadioti, A., Identification of potentially involved proteins in levofloxacin resistance mechanisms in Coxiella burnetii (2011) J Proteome Res, 10 (2), pp. 756-762. , et al
  • Poutanen, M., Varhimo, E., Kalkkinen, N., Two-dimensional difference gel electrophoresis analysis of Streptococcus uberis in response to mutagenesis-inducing ciprofloxacin challenge (2009) J Proteome Res, 8 (1), pp. 246-255. , et al
  • Beck, M., Malmstrom, J.A., Lange, V., Visual proteomics of the human pathogen Leptospira interrogans (2009) Nat Methods, 6 (11), pp. 817-823. , et al
  • Lin, X.M., Li, H., Wang, C., Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins (2008) J Proteome Res, 7 (6), pp. 2399-2405. , et al
  • Coldham, N.G., Randall, L.P., Piddock, L.J., Effect of fluoroquinolone exposure on the proteome of Salmonella enterica serovar Typhimurium (2006) J Antimicrob Chemother, 58 (6), pp. 1145-1153. , et al
  • Hebraud, M., Analysis of Listeria monocytogenes subproteomes (2014) Methods Mol Biol, 1157, pp. 109-128
  • Lin, F., Tan, H.J., Guan, J.S., Divide and conquer: subproteomic approaches toward gastric cancer biomarker and drug target discovery (2014) Expert Rev Proteomics, 11 (4), pp. 515-530. , et al
  • Abdallah, C., Dumas-Gaudot, E., Renaut, J., Gel-based and gel-free quantitative proteomics approaches at a glance (2012) Int J Plant Genomics, 2012, p. 494572. , et al
  • De Toro, M., Rojo-Bezares, B., Vinue, L., In vivo selection of aac(6ʹ)-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment (2010) J Antimicrob Chemother, 65 (9), pp. 1945-1949. , et al
  • Correia, S., Hebraud, M., Chafsey, I., Impacts of experimentally induced and clinically acquired quinolone resistance on the membrane and intracellular subproteomes of Salmonella typhimurium DT104B (2016) J Proteomics, 145, pp. 46-59. , et al
  • Jacoby, G.A., Strahilevitz, J., Hooper, D.C., Plasmid-mediated quinolone resistance (2014) Microbiol Spectr, 2, p. 5
  • Correia, S., Hebraud, M., Chafsey, I., Comparative subproteomic analysis of clinically acquired fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B (2017) Proteomics Clin Appl, 11. , et al
  • Raatschen, N., Bandow, J.E., 2-D gel-based proteomic approaches to antibiotic drug discovery (2012) Curr Protoc Microbiol, , Unit 1F.2:1F.2.1-1F.2.16
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Ishihama, Y., Oda, Y., Tabata, T., Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein (2005) Mol Cell Proteomics, 4 (9), pp. 1265-1272. , et al
  • Fernandez, L., Hancock, R.E., Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance (2012) Clin Microbiol Rev, 25 (4), pp. 661-681
  • Pagès, J.M., James, C.E., Winterhalter, M., The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria (2008) Nat Rev Microbiol, 6 (12), pp. 893-903
  • Delcour, A.H., Outer membrane permeability and antibiotic resistance (2009) Biochim Biophys Acta, 1794 (5), pp. 808-816
  • Gootz, T.D., The forgotten Gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance (2006) Biochem Pharmacol, 71 (7), pp. 1073-1084
  • Martinez, J.L., Rojo, F., Metabolic regulation of antibiotic resistance (2011) FEMS Microbiol Rev, 35 (5), pp. 768-789
  • Medeiros, A.A., O’Brien, T.F., Rosenberg, E.Y., Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy (1987) J Infect Dis, 156 (5), pp. 751-757. , et al
  • Sandegren, L., Andersson, D.I., Bacterial gene amplification: implications for the evolution of antibiotic resistance (2009) Nat Rev Microbiol, 7 (8), pp. 578-588
  • Su, L.H., Wu, T.L., Chiu, C.H., Development of carbapenem resistance during therapy for non-typhoid Salmonella infection (2012) Clin Microbiol Infect, 18 (4), pp. E91-E94
  • Hu, W.S., Lin, Y.H., Shih, C.C., A proteomic approach to study Salmonella enterica serovar Typhimurium putative transporter YjeH associated with ceftriaxone resistance (2007) Biochem Biophys Res Commun, 361 (3), pp. 694-699
  • Nilsson, A.I., Koskiniemi, S., Eriksson, S., Bacterial genome size reduction by experimental evolution (2005) Proc Natl Acad Sci USA, 102 (34), pp. 12112-12116. , et al
  • Koskiniemi, S., Sun, S., Berg, O.G., Selection-driven gene loss in bacteria (2012) PLoS Genet, 8 (6), p. e1002787. , et al
  • Santiviago, C.A., Toro, C.S., Hidalgo, A.A., Global regulation of the Salmonella enterica serovar Typhimurium major porin, OmpD (2003) J Bacteriol, 185 (19), pp. 5901-5905. , et al
  • Pfeiffer, V., Papenfort, K., Lucchini, S., Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation (2009) Nat Struct Mol Biol, 16 (8), pp. 840-846. , et al
  • Papenfort, K., Pfeiffer, V., Mika, F., SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay (2006) Mol Microbiol, 62 (6), pp. 1674-1688. , et al
  • Stratmann, T., Madhusudan, S., Schnetz, K., Regulation of the yjjQ-bglJ operon, encoding LuxR-type transcription factors, and the divergent yjjP gene by H-NS and LeuO (2008) J Bacteriol, 190 (3), pp. 926-935
  • Lee, H.J., Gottesman, S., sRNA roles in regulating transcriptional regulators: lrp and SoxS regulation by sRNAs (2016) Nucleic Acids Res
  • Mangan, M.W., Lucchini, S., Danino, V., The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium (2006) Mol Microbiol, 59 (6), pp. 1831-1847. , et al
  • Viveiros, M., Dupont, M., Rodrigues, L., Antibiotic stress, genetic response and altered permeability of E. coli (2007) PLoS One, 2 (4). , et al
  • Dupont, M., James, C.E., Chevalier, J., An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins (2007) Antimicrob Agents Chemother, 51 (9), pp. 3190-3198. , et al
  • Dowd, S.E., Killinger-Mann, K., Brashears, M., Evaluation of gene expression in a single antibiotic exposure-derived isolate of Salmonella enterica Typhimurium 14028 possessing resistance to multiple antibiotics (2008) Foodborne Pathog Dis, 5 (2), pp. 205-221. , et al
  • Guest, R.L., Raivio, T.L., Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents (2016) Trends Microbiol, 24 (5), pp. 377-390
  • Johansen, J., Eriksen, M., Kallipolitis, B., Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case (2008) J Mol Biol, 383 (1), pp. 1-9. , et al
  • Klein, G., Raina, S., Regulated control of the assembly and diversity of LPS by noncoding sRNAs (2015) Biomed Res Int, 2015, p. 153561
  • Confer, A.W., Ayalew, S., The OmpA family of proteins: roles in bacterial pathogenesis and immunity (2013) Vet Microbiol, 163 (3-4), pp. 207-222
  • Smith, S.G., Mahon, V., Lambert, M.A., A molecular Swiss army knife: OmpA structure, function and expression (2007) FEMS Microbiol Lett, 273 (1), pp. 1-11. , et al
  • Smani, Y., Fabrega, A., Roca, I., Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii (2014) Antimicrob Agents Chemother, 58 (3), pp. 1806-1808. , et al
  • Bolla, J.M., Alibert-Franco, S., Handzlik, J., Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria (2011) FEBS Lett, 585 (11), pp. 1682-1690. , et al
  • Taylor, P.L., Blakely, K.M., De Leon, G.P., Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants (2008) J Biol Chem, 283 (5), pp. 2835-2845. , et al
  • Nanduri, B., Lawrence, M.L., Peddinti, D.S., Effects of subminimum inhibitory concentrations of antibiotics on the Pasteurella multocida proteome: a systems approach (2008) Comp Funct Genomics
  • Kalamorz, F., Reichenbach, B., Marz, W., Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli (2007) Mol Microbiol, 65 (6), pp. 1518-1533. , et al
  • Cheung, K.J., Badarinarayana, V., Selinger, D.W., A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli (2003) Genome Res, 13 (2), pp. 206-215. , et al
  • Walsh, C.T., Wencewicz, T.A., Prospects for new antibiotics: a molecule-centered perspective (2014) J Antibiot (Tokyo), 67 (1), pp. 7-22
  • Dong, H., Xiang, Q., Gu, Y., Structural basis for outer membrane lipopolysaccharide insertion (2014) Nature, 511 (7507), pp. 52-56. , et al
  • Qiao, S., Luo, Q., Zhao, Y., Structural basis for lipopolysaccharide insertion in the bacterial outer membrane (2014) Nature, 511 (7507), pp. 108-111. , et al
  • Nakayama, H., Kurokawa, K., Lee, B.L., Lipoproteins in bacteria: structures and biosynthetic pathways (2012) Febs J, 279 (23), pp. 4247-4268
  • Okuda, S., Tokuda, H., Lipoprotein sorting in bacteria (2011) Annu Rev Microbiol, 65, pp. 239-259
  • Vollmer, W., Von Rechenberg, M., Holtje, J.V., Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli (1999) J Biol Chem, 274 (10), pp. 6726-6734
  • Li, H., Zhang, D.F., Lin, X.M., Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein (2015) FEMS Microbiol Lett, 362, p. 11. , et al
  • Moussatova, A., Kandt, C., O’Mara, M.L., ATP-binding cassette transporters in Escherichia coli (2008) Biochim Biophys Acta, 1778 (9), pp. 1757-1771. , et al
  • Nabu, S., Lawung, R., Isarankura-Na-Ayudhya, P., Reference map and comparative proteomic analysis of Neisseria gonorrhoeae displaying high resistance against spectinomycin (2014) J Med Microbiol, 63, pp. 371-385. , et al
  • Payne, J.W., Marshall, N.J., Peptide transport (2003) Microbial Transport Systems, , Weinheim: Wiley-VCH Verlag GmbH &
  • Co. KGaA,. In: Winkelmann G, editor
  • Miyakoshi, M., Chao, Y., Vogel, J., Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA (2015) Embo J, 34 (11), pp. 1478-1492
  • Garmory, H.S., Titball RW. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies (2004) Infect Immun, 72 (12), pp. 6757-6763
  • Pereira, C.S., Thompson, J.A., Xavier, K.B., AI-2-mediated signalling in bacteria (2013) FEMS Microbiol Rev, 37 (2), pp. 156-181
  • Bhargava, P., Collins, J.J., Boosting bacterial metabolism to combat antibiotic resistance (2015) Cell Metab, 21 (2), pp. 154-155
  • Peng, B., Su, Y.B., Li, H., Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria (2015) Cell Metab, 21 (2), pp. 249-261. , et al
  • Poole, K., Bacterial stress responses as determinants of antimicrobial resistance (2012) J Antimicrob Chemother, 67 (9), pp. 2069-2089