Expanding the applicability of some high order Househölder-like methods

Autor: Amat, S.; Argyros, I.K.; Hernández Verón, Miguel AngelRomero Alvarez, Natalia

Tipo de documento: Artículo de revista

Revista: Algorithms. ISSN: 1999-4893 . Año: 2017. Número: 2. Volumen: 10.

Referencias:

  • Chun, C., Construction of third-order modifications of Newton's method (2007) Appl. Math. Comput, 189, pp. 662-668
  • Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Salanova, M.A., Chebyshev-like methods and quadratic equations (1999) Rev. Anal. Numer. Theor. Approx, 28, pp. 23-35
  • Traub, J.F., (1964) Iterative Methods for the Solution of Equations
  • , , Prentice-Hall: Englewood Cliffs, NJ, USA
  • Amat, S., Hernández, M.A., Romero, N., On a family of high-order iterative methods under gamma conditions with applications in denoising (2014) Numer. Math, 127, pp. 201-221
  • Amat, S., Hernández, M.A., Romero, N., Semilocal convergence of a sixth order iterative method for quadratic equations (2012) Appl. Numer. Math, 62, pp. 833-841
  • Amat, S., Hernández, M.A., Romero, N., A modified Chebyshev's iterative method with at least sixth order of convergence (2008) Appl. Math. Comput, 206, pp. 164-174
  • Argyros, I.K., An inverse free Newton-Jarrat-type iterative method for solving equations under gamma condition (2008) J. Appl. Math. Comput, 28, pp. 15-28
  • Kantorovich, L.V., Akilov, G.P., (1982) Functional Analysis
  • , , Pergamon Press: Oxford, UK
  • Argyros, I.K., Hilout, S., Khattri, S.K., Expanding the applicability of Newton's method using Smale's theory (2014) J. Appl. Math. Comput, 261, pp. 183-200