Sums of powers of Catalan triangle numbers

Autor: Miana, P.J.; Ohtsuka, H.; Romero Alvarez, Natalia

Tipo de documento: Artículo de revista

Revista: Discrete Mathematics. ISSN: 0012-365X. Año: 2017. Número: 10. Volumen: 340. Páginas: 2388-2397.

CIRC: GRUPO A

Referencias:

  • Aigner, M., Catalan-like numbers and determinants (1999) J. Combin. Theory Ser. A, 87, pp. 33-51
  • Aigner, M., Enumeration via ballot numbers (2008) Discrete Math., 308 (12), pp. 2544-2563
  • Benjamin, A.T., Quinn, J., (2003) Proofs that Really Count, Dolciani Mathematical Exposition, 27. , Mathematical Association of America
  • Chen, X., Chu, W., Moments on Catalan numbers (2009) J. Math. Anal. Appl., 349 (2), pp. 311-316
  • Chu, W., Summation formulae involving harmonic numbers (2012) Filomat, 26 (1), pp. 143-152
  • Deutsch, E., Shapiro, L., A survey of the Fine numbers (2001) Discrete Math., 241, pp. 241-265
  • Eplett, W.J.R., A note about the Catalan triangle (1979) Discrete Math., 25, pp. 289-291
  • Gosper, R.W., Decision procedures for indefinite hypergeometric summation (1978) Proc. Natl. Acad. Sci. USA, 75, pp. 40-42
  • Guo, V.J.W., Zeng, J., Factors of binomial sums from Catalan triangle (2010) J. Number Theory, 130 (1), pp. 172-186
  • Guo, V.J.W., Zeng, J., Factors of sums and alternating sums involving binomial coefficients and powers of integers (2011) Int. J. Number Theory, 7, pp. 1959-1976
  • Gutiérrez, J.M., Hernández, M.A., Miana, P.J., Romero, N., New identities in the Catalan triangle (2008) J. Math. Anal. Appl., 341 (1), pp. 52-61
  • Miana, P.J., Romero, N., Moments of combinatorial and Catalan numbers (2010) J. Number Theory, 130 (8), pp. 1876-1887
  • Ohtsuka, H., Tauraso, R., Problem 11844 (2015) Amer. Math. Monthly, 122 (5), p. 501. , http://www.mat.uniroma2.it/~tauraso/AMM/AMM11844.pdf, Solution
  • Paule, P., Schneider, C., Computer proofs of a new family of harmonic number identities (2003) Adv. Appl. Math., 31 (2), pp. 359-378
  • Petkovsek, M., Wilf, H.S., Zeilberger, D., (1997) A=B, , http://www.cis.upenn.edu/~wilf/AeqB.html, A K Peters Ltd. Wellesley
  • Shapiro, L.W., A Catalan triangle (1976) Discrete Math., 14, pp. 83-90
  • Slavík, A., Identities with squares of binomial coefficients (2014) Ars Combin., 113, pp. 377-383
  • Sloane, N., http://oeis.org/, The On-line Encyclopedia of Integer Sequences(OEIS)
  • Sloane, N., (1973) A Handbook of Integer Sequences, , Academic Press New Jersey
  • Spies, J., Some identities involving harmonic numbers (1990) Math. Comp., 55, pp. 839-863
  • Stanley, R.P., (1999) Enumerative Combinatorics, Vol. 2, , Cambridge University Press Cambridge
  • Stanley, R.P., (2015) Catalan Numbers, , Cambridge University Press Cambridge
  • Wilf, H., Zeilberger, D., Rational functions certify combinatorial (1990) J. Amer. Math. Soc., 3 (1), pp. 147-158
  • Zhang, Z., Pang, B., Several identities in the Catalan triangle (2010) Indian J. Pure Appl. Math., 41 (2), pp. 363-378