On the local convergence of a Newton–Kurchatov-type method for non-differentiable operators

Autor: Hernández Verón, Miguel AngelRubio Crespo, María Jesús

Tipo de documento: Artículo de revista

Revista: Applied Mathematics and Computation. ISSN: 0096-3003. Año: 2017. Volumen: 304. Páginas: 1-9.

SCIMAGO (datos correspondientes al año 2014):
SJR:
,958  SNIP: 1,378 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Amat, S., Busquier, S., Gutiérrez, J.M., On the local convergence of secant-type methods (2004) Int. J. Comput. Math., 8, pp. 1153-1161
  • Argyros, I.K., Cho, Y.J., Hilout, S., Numerical Methods for Equations and its Applications (2012), CRC Press/Taylor and Francis Boca Raton, Florida, USAArgyros, I.K., On the Newton-Kantorovich hypothesis for solving equations (2004) J. Comput. Appl. Math., 169, pp. 315-332
  • Argyros, I.K., Ren, H., On an improved local convergence analysis for the secant method (2009) Numer. Algorithms, 52, pp. 257-271
  • Chen, J., Shen, Z., Convergence analysis of the secant type methods (2007) Appl. Math. Comput., 188, pp. 514-524
  • Deimling, K., Nonlinear Functional Analysis (1985), Springer-Verlag BerlinDennis, J.E., Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1996), SIAM PhiladelphiaHernández, M.A., Rubio, M.J., A uniparametric family of iterative processes for solving nondifferentiable equations (2002) J. Math. Anal. Appl., 275, pp. 821-834
  • Hernández, M.A., Rubio, M.J., Ezquerro, J.A., Secant-like methods for solving nonlinear integral equations of the Hammerstein type (2000) J. Comput. Appl. Math., 115 (1-2), pp. 245-254
  • Hongmin, R., Qingiao, W., The convergence ball of the secant method under Hölder continuous divided differences (2006) J. Comput. Appl. Math., 194, pp. 284-293
  • Kantorovich, L.V., Akilov, G.P., Functional Analysis (1982), Pergamon Press OxfordKewei, L., Homocentric convergence ball of the secant method (2007) Appl. Math. J. Chin. Univ. Ser. B, 22 (3), pp. 353-365
  • Kurchatov, V.A., On a method of linear interpolation for the solution of functional equations (1971) Dolk. Akad. Nauk SSSR, 198, pp. 524-526. , translation in Soviet Math. Dolk.,12 (1971), 835–838
  • Potra, F.A., Pták, V., Nondiscrete Induction and Iterative Methods (1984), Pitman Publishing Limited LondonRashidinia, J., Zarebnia, M., New approach for numerical solution of Hammerstein integral equations (2007) Appl. Math. Comput., 185, pp. 147-154
  • Ren, H., Argyros, I.K., Local convergence of efficient secant-type methods for solving nonlinear equations (2012) Appl. Math. Comput., 218, pp. 7655-7664
  • Rheinboldt, W.C., An Adaptive Continuation Process for Solving Systems of Nonlinear Equations (1977), 3, pp. 129-142. , Banach Center PublicationsShakhno, S., On the secant method under generalized Lipschitz conditions for the divided difference operator (2007) Proc. Appl. Math. Mech., 7, pp. 2060083-2060084