Stability of the permanent rotations of an asymmetric gyrostat in a uniform Newtonian field

Autor: Iñarrea Las Heras, ManuelLanchares Barrasa, VíctorPascual Lería, Ana Isabel; Elipe, A.; 

Tipo de documento: Artículo de revista

Revista: Applied Mathematics and Computation. ISSN: 0096-3003. Año: 2017. Volumen: 293. Páginas: 404-415.

JCR (datos correspondientes al año 2014):
Edición:
Science  Área: MATHEMATICS, APPLIED  Quartil: Q1  Lugar área: 35/255  F. impacto: 1,551 

SCIMAGO (datos correspondientes al año 2014):
SJR:
,958  SNIP: 1,378 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Anchev, A., On the stability of permanent rotations of a heavy gyrostat (1962) Pmm-J. Appl. Math. Mech., 26, pp. 22-28
  • Anchev, A., Permanent rotations of a heavy gyrostat having a stationary point (1967) Pmm-J. Appl. Math. Mech., 31, pp. 49-58
  • Arnold, V.I., On an a priori estimate in the theory of hydrodynamical stability, (russian) (1966) Izv. Vyssh. Uchebn. Zaved. Mat. Nauk., 54, pp. 3-5. , (English) Am. Math. Soc. Transl. 79 (1969) 267–260
  • Aslanov, V.S., Integrable cases of the problem of the free motion of a gyrostat (2014) Pmm-J. Appl. Math. Mech., 78, pp. 445-453
  • Aslanov, V.S., Yudintsev, V.V., Dynamics and chaos control of asymmetric gyrostat satellites (2014) Cosmic Res., 52, pp. 216-228
  • Bloch, A.M., Marsden, J.E., Stabilization of rigid body dynamics by the energy-casimir method (1990) Syst. Control Lett., 14, pp. 341-346
  • Cavas, J.A., Vigueras, A., An integrable case of a rotational motion analogous to that of Lagrange and Poisson for a gyrostat in a newtonian force field (1994) Celest. Mech. Dyn. Astron., 60, pp. 317-330
  • E.Cochran, J., Shu, P.H., Rew, S.D., Attitude motion of asymmetric dual-spin spacecraft (1982) J. Guid. Control Dynam., 5, pp. 37-42
  • Deprit, A., Elipe, A., Complete reduction of the Euler-Poinsot problem (1993) J. Astronaut. Sci., 41, pp. 603-628
  • Elipe, A., Arribas, M., Riaguas, A., Complete analysis of bifurcations in the axial gyrostat problem (1997) J. Phys. A: Math. Gen., 30, pp. 587-601
  • Elipe, A., Lanchares, V., Phase flow of an axially symmetrical gyrostat with one constant rotor (1997) J. Math. Phys., 38, pp. 3533-3544
  • Elipe, A., Lanchares, V., Two equivalent problems: gyrostats in free motion and parametric quadratic Hamiltonians” (1997) Mech. Res. Commun., 24, pp. 583-590
  • Elipe, A., Lanchares, V., Exact solution of a triaxial gyrostat with one rotor (2008) Celest. Mech. Dyn. Astron., 101, pp. 49-68
  • de Bustos Muñoz, M.T., Guirao, J.L.G., López, J.A.V., Campuzano, A.V., On sufficient conditions of stability of the permanent rotations of a heavy triaxial gyrostat (2015) Qual. Theory Dyn. Syst., 14, p. 265280
  • Hall, C.D., Spinup dynamics of biaxial gyrostats (1995) J. Astronaut. Sci., 43, pp. 263-275
  • Hall, C.D., Spinup dynamics of gyrostats (1995) J. Guid. Control Dynam., 18, pp. 1177-1183
  • Hall, C.D., Rand, R.H., Spinup dynamics of axial dual-spin spacecraft (1994) J. Guid. Control Dynam., 17, pp. 30-37
  • Holm, D., Marsden, J.E., Ratiu, T.S., Weinstein, A., Nonlinear stability of fluid and plasma equilibria (1985) Phys. Rep., 123, pp. 1-116
  • Hughes, P.C., (1986) Spacecraft Attitude Dynamics, , John Wiley &
  • Sons, New York
  • Iñarrea, M., Lanchares, V., Chaos in the reorientation process of a dual-spin spacecraft with time dependent moments of inertia (2000) Int. J. Bifurc. Chaos, 10, pp. 997-1018
  • Kalvouridis, T.J., Stationary solutions of a small gyrostat in the Newtonian field of two bodies with equal masses (2010) Nonlinear Dyn., 61, pp. 373-381
  • Kovalev, A.M., Stability of steady rotations of a heavy gyrostat about its principal axis (1981) Pmm-J. Appl. Math. Mech., 44, pp. 709-712
  • Kovalev, A.M., Stability of stationary motions of mechanical systems with a rigid body as the basic element (2001) Nonlinear Dyn. Syst. Theory., 1, pp. 81-96
  • Lanchares, V., Elipe, A., Bifurcations in biparametric quadratic potentials (1995) CHAOS: Interdiscip. J. Nonlinear Sci., 5, pp. 367-373
  • Lanchares, V., Elipe, A., Bifurcations in biparametric quadratic potentials. II (1995) CHAOS: Interdiscip. J. Nonlinear Sci., 5, pp. 531-535
  • Lanchares, V., Iñarrea, M., Salas, J.P., Spin rotor stabilization of a dual-spin spacecraft with time dependent moments of inertia (1998) Int. J. Bifurc. Chaos, 8, pp. 609-617
  • Lanchares, V., Iñarrea, M., Salas, J.P., Sierra, J.D., Elipe, A., Surfaces of bifurcation in a triparametric quadratic Hamiltonian (1995) Phys. Rev. E, 52, pp. 5540-5548
  • Leimanis, E., (1965) The General Problem of the Motion of Coupled Rigid Bodies About a Fixed Point, , Springer-Verlag, Berlin
  • Lewis, D., Ratiu, T., Simo, J.C., Marsden, J.E., The heavy top: a geometric treatment (1992) Nonlinearity, 5, pp. 1-48
  • Marsden, J.E., (1992) Lectures on Mechanics, , Cambridge University Press, Cambridge
  • Ortega, J.P., Ratiu, T.S., Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry (1999) J. Geom. Phys., 32, pp. 160-188
  • Rumiantsev, V., On the stability of motion of gyrostats (1961) Pmm-J. Appl. Math. Mech., 25, pp. 9-19
  • Sansaturio, M.E., Vigueras, A., Translatory-rotatory motion of a gyrostat in a Newtonian force field (1988) Celest. Mech., 41, pp. 297-311
  • Sarychev, V.A., Dynamics of an axisymmetric gyrostat satellite under the action of a gravitational moment (2010) Cosmic Res., 48, p. 18893
  • Sarychev, V.A., Dynamics of an axisymmetric gyrostat satellite. equilibrium positions and their stability (2014) Pmm-J. Appl. Math. Mech., 78, p. 249257
  • Tsogas, V., Kalvouridis, T.J., Mavraganis, A.G., Equilibrium states of a gyrostat satellite moving in the gravitational field of an annular configuration of n big bodies (2005) Acta Mech., 175, pp. 181-195
  • Vera, J.A., Vigueras, A., Estabilidad de ciertos equilibrios de un giróstato simétrico bajo un potencial con simetría axial U(k3) (2002) Métodos de dinámica orbital y rotacional (Proc. IV Jornadas de Trabajo en Mecánica Celeste), pp. 175-181. , Servicio de Publicaciones Universidad de Murcia
  • Vera, J.A., Vigueras, A., Soluciones de equilibrio en un problema generalizado del de Lagrange-Poisson: condiciones necesarias y suficientes de estabilidad (2003) Monografías de la Real Academia de Ciencias de Zaragoza, 22, pp. 141-150