Impacts of experimentally induced and clinically acquired quinolone resistance on the membrane and intracellular subproteomes of Salmonella Typhimurium DT104B

Autor: Correia, S.; Hébraud, M.; Chafsey, I.; Chambon, C.; Viala, D.; Torres Manrique, CarmenToro Hernando, María de; Capelo, J.L.; Poeta, P.; Igrejas, G.; 

Tipo de documento: Artículo de revista

Revista: Journal of Proteomics . ISSN: 1874-3919. Año: 2016. Volumen: 145. Páginas: 46-59.

JCR (datos correspondientes al año 2014):
Edición:
Science  Área: BIOCHEMICAL RESEARCH METHODS  Quartil: Q1  Lugar área: 16/79  F. impacto: 3,888 

SCIMAGO (datos correspondientes al año 2014):
SJR:
1,146  SNIP: 1,052 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • WHO, Antimicrobial Resistance: Global Report On Surveillance (2014), World Health OrganizationEnani, M.A., Antimicrobial resistance. Insights from the declaration of world alliance against antibiotic resistance (2015) Saudi Med. J., 36, pp. 11-12
  • Fair, R.J., Tor, Y., Antibiotics and bacterial resistance in the 21st century (2014) Perspect. Med. Chem., 6, pp. 25-64
  • CDC, Antibiotic Resistance Threats in the United States, 2013 (2013), CDC: Centers for Disease Control and Prevention AtlantaIwamoto, M., Salmonellosis (Nontyphoidal) (2016) CDC Health Information for International Travel 2016, , G.W. Brunette United States of America Oxford University Press
  • Hopkins, K.L., Davies, R.H., Threlfall, E.J., Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments (2005) Int. J. Antimicrob. Agents, 25, pp. 358-373
  • Moulin, F., Sauve-Martin, H., Marc, E., Lorrot, M., Soulier, M., Ravilly, S., Ciprofloxacin after clinical failure of ceftriaxone for severe salmonellosis in children (2002) Internet J. Infect. Dis., 3
  • Mather, A.E., Reid, S.W., Maskell, D.J., Parkhill, J., Fookes, M.C., Harris, S.R., Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts (2013) Science, 341, pp. 1514-1517
  • Correia, S., Nunes-Miranda, J.D., Pinto, L., Santos, H.M., de Toro, M., Saenz, Y., Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain (2014) Int. J. Mol. Sci., 15, pp. 14191-14219
  • Threlfall, E.J., Epidemic Salmonella typhimurium DT 104 — a truly international multiresistant clone (2000) J. Antimicrob. Chemother., 46, pp. 7-10
  • Helms, M., Ethelberg, S., Molbak, K., International Salmonella Typhimurium DT104 infections, 1992–2001 (2005) Emerg. Infect. Dis., 11, pp. 859-867
  • Redgrave, L.S., Sutton, S.B., Webber, M.A., Piddock, L.J., Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success (2014) Trends Microbiol., 22, pp. 438-445
  • Hernandez, A., Sanchez, M.B., Martinez, J.L., Quinolone resistance: much more than predicted (2011) Front. Microbiol., 2, p. 22
  • Suzuki, S., Horinouchi, T., Furusawa, C., Prediction of antibiotic resistance by gene expression profiles (2014) Nat. Commun., 5, p. 5792
  • Oz, T., Guvenek, A., Yildiz, S., Karaboga, E., Tamer, Y.T., Mumcuyan, N., Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution (2014) Mol. Biol. Evol., 31, pp. 2387-2401
  • Toprak, E., Veres, A., Michel, J.B., Chait, R., Hartl, D.L., Kishony, R., Evolutionary paths to antibiotic resistance under dynamically sustained drug selection (2012) Nat. Genet., 44, pp. 101-105
  • Vranakis, I., Goniotakis, I., Psaroulaki, A., Sandalakis, V., Tselentis, Y., Gevaert, K., Proteome studies of bacterial antibiotic resistance mechanisms (2014) J. Proteome, 97, pp. 88-99
  • Hébraud, M., Analysis of Listeria monocytogenes subproteomes (2014) Methods Mol. Biol., 1157, pp. 109-128
  • Burchmore, R., Mapping pathways to drug resistance with proteomics (2014) Expert Rev. Proteomics, 11, pp. 1-3
  • de Toro, M., Rojo-Bezares, B., Vinue, L., Undabeitia, E., Torres, C., Saenz, Y., In vivo selection of aac(6′)-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment (2010) J. Antimicrob. Chemother., 65, pp. 1945-1949
  • Mendonca, N., Leitao, J., Manageiro, V., Ferreira, E., Canica, M., Spread of extended-spectrum beta-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal (2007) Antimicrob. Agents Chemother., 51, pp. 1946-1955
  • CLSI, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (2012) Approved Standard — Ninth Edition. CLSI Document M07-A9, , Clinical and Laboratory Standards Institute Wayne, PA
  • CLSI, Performance Standards for Antimicrobial Susceptibility Testing (2012) Twenty-Second Informational Supplement. CLSI document M100-S22, , Clinical and Laboratory Standards Institute Wayne, PA
  • CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests (2012) Approved Standard - Eleventh Edition. CLSI Document M02-A11, , Clinical and Laboratory Standards Institute Wayne, PA
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Eaves, D.J., Randall, L., Gray, D.T., Buckley, A., Woodward, M.J., White, A.P., Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica (2004) Antimicrob. Agents Chemother., 48, pp. 4012-4015
  • Griggs, D.J., Gensberg, K., Piddock, L.J., Mutations in gyrA gene of quinolone-resistant Salmonella serotypes isolated from humans and animals (1996) Antimicrob. Agents Chemother., 40, pp. 1009-1013
  • Abdallah, C., Dumas-Gaudot, E., Renaut, J., Sergeant, K., Gel-based and gel-free quantitative proteomics approaches at a glance (2012) Int. J. Plant Genomics, 2012, p. 494572
  • da Costa, J.P., Carvalhais, V., Ferreira, R., Amado, F., Vilanova, M., Cerca, N., Proteome signatures—how are they obtained and what do they teach us? (2015) Appl. Microbiol. Biotechnol., 99, pp. 7417-7431
  • Piddock, L.J., Understanding the basis of antibiotic resistance: a platform for drug discovery (2014) Microbiology, 160, pp. 2366-2373
  • Aldred, K.J., Kerns, R.J., Osheroff, N., Mechanism of quinolone action and resistance (2014) Biochemistry, 53, pp. 1565-1574
  • Fabrega, A., Soto, S.M., Balleste-Delpierre, C., Fernandez-Orth, D., de Anta MT, J., Vila, J., Impact of quinolone-resistance acquisition on biofilm production and fitness in Salmonella enterica (2014) J. Antimicrob. Chemother., 69, pp. 1815-1824
  • Jacoby, G.A., Strahilevitz, J., Hooper, D.C., Plasmid-mediated quinolone resistance (2014) Microbiol. Spectr., 2
  • Martinez-Martinez, L., Eliecer Cano, M., Manuel Rodriguez-Martinez, J., Calvo, J., Pascual, A., Plasmid-mediated quinolone resistance (2008) Expert Rev. Anti-Infect. Ther., 6, pp. 685-711
  • Fernandez, L., Hancock, R.E., Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance (2012) Clin. Microbiol. Rev., 25, pp. 661-681
  • Pages, J.M., James, C.E., Winterhalter, M., The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria (2008) Nat. Rev. Microbiol., 6, pp. 893-903
  • Koskiniemi, S., Sun, S., Berg, O.G., Andersson, D.I., Selection-driven gene loss in bacteria (2012) PLoS Genet., 8. , e1002787
  • Nilsson, A.I., Koskiniemi, S., Eriksson, S., Kugelberg, E., Hinton, J.C., Andersson, D.I., Bacterial genome size reduction by experimental evolution (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 12112-12116
  • Hu, W.S., Lin, Y.H., Shih, C.C., A proteomic approach to study Salmonella enterica serovar Typhimurium putative transporter YjeH associated with ceftriaxone resistance (2007) Biochem. Biophys. Res. Commun., 361, pp. 694-699
  • Santiviago, C.A., Toro, C.S., Hidalgo, A.A., Youderian, P., Mora, G.C., Global regulation of the Salmonella enterica serovar typhimurium major porin, OmpD (2003) J. Bacteriol., 185, pp. 5901-5905
  • Pfeiffer, V., Papenfort, K., Lucchini, S., Hinton, J.C., Vogel, J., Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation (2009) Nat. Struct. Mol. Biol., 16, pp. 840-846
  • Papenfort, K., Pfeiffer, V., Mika, F., Lucchini, S., Hinton, J.C., Vogel, J., SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay (2006) Mol. Microbiol., 62, pp. 1674-1688
  • Gootz, T.D., The forgotten Gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance (2006) Biochem. Pharmacol., 71, pp. 1073-1084
  • Martinez, J.L., Rojo, F., Metabolic regulation of antibiotic resistance (2011) FEMS Microbiol. Rev., 35, pp. 768-789
  • Medeiros, A.A., O'Brien, T.F., Rosenberg, E.Y., Nikaido, H., Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy (1987) J. Infect. Dis., 156, pp. 751-757
  • Sandegren, L., Andersson, D.I., Bacterial gene amplification: implications for the evolution of antibiotic resistance (2009) Nat. Rev. Microbiol., 7, pp. 578-588
  • Su, L.H., Wu, T.L., Chiu, C.H., Development of carbapenem resistance during therapy for non-typhoid Salmonella infection (2012) Clin. Microbiol. Infect., 18, pp. E91-E94
  • Viveiros, M., Dupont, M., Rodrigues, L., Couto, I., Davin-Regli, A., Martins, M., Antibiotic stress, genetic response and altered permeability of E. coli (2007) PLoS ONE, 2, p. e365
  • Dupont, M., James, C.E., Chevalier, J., Pages, J.M., An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins (2007) Antimicrob. Agents Chemother., 51, pp. 3190-3198
  • Dowd, S.E., Killinger-Mann, K., Brashears, M., Fralick, J., Evaluation of gene expression in a single antibiotic exposure-derived isolate of Salmonella enterica Typhimurium 14028 possessing resistance to multiple antibiotics (2008) Foodborne Pathog. Dis., 5, pp. 205-221
  • Confer, A.W., Ayalew, S., The OmpA family of proteins: roles in bacterial pathogenesis and immunity (2013) Vet. Microbiol., 163, pp. 207-222
  • Smith, S.G., Mahon, V., Lambert, M.A., Fagan, R.P., A molecular Swiss army knife: OmpA structure, function and expression (2007) FEMS Microbiol. Lett., 273, pp. 1-11
  • Ambrosi, C., Pompili, M., Scribano, D., Zagaglia, C., Ripa, S., Nicoletti, M., Outer membrane protein A (OmpA): a new player in Shigella flexneri protrusion formation and inter-cellular spreading (2012) PLoS ONE, 7. , e49625
  • Poole, K., Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria (2000) Antimicrob. Agents Chemother., 44, pp. 2233-2241
  • Bolla, J.M., Alibert-Franco, S., Handzlik, J., Chevalier, J., Mahamoud, A., Boyer, G., Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria (2011) FEBS Lett., 585, pp. 1682-1690
  • Delcour, A.H., Outer membrane permeability and antibiotic resistance (1794) Biochim. Biophys. Acta, 2009, pp. 808-816
  • Chapman, J.S., Georgopapadakou, N.H., Routes of quinolone permeation in Escherichia coli (1988) Antimicrob. Agents Chemother., 32, pp. 438-442
  • Hirai, K., Aoyama, H., Irikura, T., Iyobe, S., Mitsuhashi, S., Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli (1986) Antimicrob. Agents Chemother., 29, pp. 535-538
  • Dong, H., Xiang, Q., Gu, Y., Wang, Z., Paterson, N.G., Stansfeld, P.J., Structural basis for outer membrane lipopolysaccharide insertion (2014) Nature, 511, pp. 52-56
  • Lopez-Abarrategui, C., Del Monte-Martinez, A., Reyes-Acosta, O., Franco, O.L., Otero-Gonzalez, A.J., LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides (2013) Front. Microbiol., 4, p. 389
  • Giraud, E., Cloeckaert, A., Kerboeuf, D., Chaslus-Dancla, E., Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar Typhimurium (2000) Antimicrob. Agents Chemother., 44, pp. 1223-1228
  • Taylor, P.L., Blakely, K.M., de Leon, G.P., Walker, J.R., McArthur, F., Evdokimova, E., Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants (2008) J. Biol. Chem., 283, pp. 2835-2845
  • Walsh, C.T., Wencewicz, T.A., Prospects for new antibiotics: a molecule-centered perspective (2014) J. Antibiot., 67, pp. 7-22
  • Qiao, S., Luo, Q., Zhao, Y., Zhang, X.C., Huang, Y., Structural basis for lipopolysaccharide insertion in the bacterial outer membrane (2014) Nature, 511, pp. 108-111
  • Vollmer, W., von Rechenberg, M., Holtje, J.V., Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli (1999) J. Biol. Chem., 274, pp. 6726-6734
  • Li, H., Zhang, D.F., Lin, X.M., Peng, X.X., Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein (2015) FEMS Microbiol. Lett., 362
  • Bhargava, P., Collins, J.J., Boosting bacterial metabolism to combat antibiotic resistance (2015) Cell Metab., 21, pp. 154-155
  • Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., Collins, J.J., A common mechanism of cellular death induced by bactericidal antibiotics (2007) Cell, 130, pp. 797-810
  • Troxell, B., Hassan, H.M., Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria (2013) Front. Cell. Infect. Microbiol., 3, p. 59
  • Banci, L., Bertini, I., Metallomics and the cell: some definitions and general comments (2013) Met. Ions life Sci., 12, pp. 1-13
  • Bjorkman, J., Nagaev, I., Berg, O.G., Hughes, D., Andersson, D.I., Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance (2000) Science, 287, pp. 1479-1482
  • Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. (2005) Mol. Cell. Proteomics, 4, pp. 1265-1272