On solving a generalization of the kepler equation

Autor: San Juan Díaz, Juan Félix; Lopez, R; Hautesserres, D; 

Tipo de documento: Capítulo de libro

Libro: Advances in the Astronautical Sciences. Spaceflight mechanics 2015 : proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting

Año: 2015  ISBN: 978-0-87703-623-4  Páginas: 3015-3029

Referencias:

  • Krylov, N., Bogoliubov, N.N., (1947) Introduction to Nonlinear Mechanics, , Princeton University Press, Princeton, NY
  • San Juan, J.F., Gavín, A., Ĺopez, L.M., Ĺopez, R., PPKBZ9A, SA two orbit propagators based on an analytical theory (2011) The Journal of the Astronautical Sciences, 58 (4), pp. 643-660
  • San Juan, J.F., Serrano, S., (2000) Application of the Z6PPKB ATESAT-model to Compute the Orbit of An Artificial Satellite Around Mars, , Tech. Rep. DTS/MPI/MS/MN/2000-057, CNES, Francia
  • Abad, A., San Juan, J.F., Gavín, A., Short term evolution of artificial satellites (2001) Celestial Mechanics &
  • Dynamical Astronomy, 79 (4), pp. 277-296
  • Smith, G.R., A simple, efficient starting value for the iterative solution of Kepler's equation (1979) Celestial Mechanics, 19, pp. 163-166
  • Ng, E.W., A general algorithm for the solution of Kepler's equation for elliptic orbits (1979) Celestial Mechanics, 20, pp. 243-249
  • Danby, J.M.A., Burkardt, T.M., The solution of Kepler's equation. I (1983) Celestial Mechanics, 31, pp. 95-107
  • Serafin, R.A., Bounds on the solution to Kepler's equation (1986) Celestial Mechanics, 38, pp. 111-121
  • Odell, A.W., Gooding, R.H., Procedures for solving Kepler's equation (1986) Celestial Mechanics, 38, pp. 307-334
  • Conway, B.A., An improved algorithm due to laguerre for the solution of Kepler's equation (1986) Celestial Mechanics, 39 (2), pp. 199-211
  • Danby, J.M.A., The Solution of Kepler's equation - III (1987) Celestial Mechanics, 40 (3-4), pp. 303-312
  • Taff, L.G., Brennan, T.A., On solving kepler's equation (1989) Celestial Mechanics and Dynamical Astronomy, 46 (2), pp. 163-176
  • Nijenhuis, A., Solving Kepler's equation with high efficiency and accuracy (1991) Celestial Mechanics &
  • Dynamical Astronomy, 51 (4), pp. 319-330
  • Fukushima, T., A fast procedure solving kepler's equation for elliptic case (1996) Astronomical Journal, 112 (6), pp. 2858-2861
  • Palacios, M., Kepler equation and accelerated Newton method (2002) Journal of Computational and Applied Mathematics, 138 (2), pp. 335-346
  • McLaughlin, C.A., Feinstein, S.A., Dynamic discretization method for solving Kepler's equation (2006) Celestial Mechanics and Dynamical Astronomy, 96 (1), pp. 49-62
  • Colwell, P., (1993) Solving Kepler's Equation over Three Centuries, , Willmann-Bell, Richmond, Va
  • Traub, J.F., (1964) Iterative Methods for the Solution of Equations, , Prentice-Hall, NJ
  • Deprit, A., The elimination of the parallax in satellite theory (1981) Celestial Mechanics, 24, pp. 111-153
  • Alfriend, K.T., Coffey, S.L., Elimination of the perigee in satellite problem (1984) Celestial Mechanics, 32, pp. 163-172