Fluoride anion recognition by a multifunctional urea derivative: An experimental and theoretical study

Autor: Schiller, J.; Pérez-Ruiz, R.; Sampedro Ruiz, Diego; Marqués-López, E.; Herrera, R.P.; Díaz, D.D.; 

Tipo de documento: Artículo de revista

Revista: Sensors. ISSN: 1424-8220. Año: 2016. Número: 5. Volumen: 16.

doi 10.3390/s16050658Texto completo open access 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Busschaert, N., Caltagirone, C., Van Rossom, W., Gale, P.A., Applications of supramolecular anion recognition (2015) Chem. Rev, 115, pp. 8038-8155. , [CrossRef] [PubMed]
  • Bregovic, V.B., Basaric, N., Mlinaric-Majerski, K., Anion binding with urea and thiourea derivatives (2015) Coord. Chem. Rev, 295, pp. 80-124. , [CrossRef]
  • Zhou, Y., Zhang, J.F., Yoon, J., Fluorescence and colorimetric chemosensors for fluoride-ion detection (2014) Chem. Rev, 114, pp. 5511-5571. , [CrossRef] [PubMed]
  • Moragues, M.A., Sancenon, F., Martinez-Mañez, R., Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year (2009) Chem. Soc. Rev., 2011 (40), pp. 2593-2643. , [CrossRef] [PubMed]
  • Kubik, S., Anion recognition in water (2010) Chem. Soc. Rev, 39, pp. 3648-3663. , [CrossRef] [PubMed]
  • De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E., Signaling recognition events with fluorescent sensors and switches (1997) Chem. Rev, 97, pp. 1515-1566. , [CrossRef] [PubMed]
  • Thiagarajan, V., Ramamurthy, P., Thirumalai, D., Ramakrishnan, V.T., A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways (2005) Org. Lett, 7, pp. 657-660. , [CrossRef] [PubMed]
  • Gunnlaugsson, T., Davis, A.P., Hussey, G.M., Tierney, J., Glynn, M., Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors (2004) Org. Biomol. Chem, 2, pp. 1856-1863. , [CrossRef] [PubMed]
  • Kim, S.K., Yoon, J., A new fluorescent PET chemosensor for fluoride ions (2002) Chem. Commun, , [CrossRef]
  • Gunnlaugsson, T., Davis, A.P., O’Brien, J., Glynn, M., Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors (2002) Org. Lett, 4, pp. 2449-2452. , [CrossRef] [PubMed]
  • Gunnlaugsson, T., Davis, A.P., Glynn, M., Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors (2001) Chem. Commun, , [CrossRef]
  • Nishizawa, S., Kato, Y., Teramae, N., Fluorescence Sensing of Anions via Intramolecular Excimer Formation in a Pyrophosphate-Induced Self-Assembly of a Pyrene-Functionalized Guanidinium Receptor (1999) J. Am. Chem. Soc, 121, pp. 9463-9464. , [CrossRef]
  • Nishizawa, S., Kaneda, H., Uchida, T., Teramae, N., Anion sensing by a donor–spacer–acceptor system: An intra-molecular exciplex emission enhanced by hydrogen bond-mediated complexation (1998) J. Chem. Soc. Perkin Trans, 2, pp. 2325-2328. , [CrossRef]
  • Kovalchuk, A., Bricks, J.L., Reck, G., Rurack, K., Schulz, B., Szumna, A., Weibhoff, H., A charge transfer-type fluorescent molecular sensor that “lights up” in the visible upon hydrogen bond-assisted complexation of anions (2004) Chem. Commun, , [CrossRef][PubMed
  • Wu, F.-Y., Jiang, Y.-B., P-Dimethylaminobenzamide as an ICT dual fluorescent neutral receptor for anions under proton coupled electron transfer sensing mechanism (2002) Chem. Phys. Lett, 355, pp. 438-444. , [CrossRef]
  • Zhang, X., Guo, L., Wu, F.-Y., Jiang, Y.-B., Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism (2003) Org. Lett., 5, pp. 2667-2670. , [CrossRef] [PubMed]
  • Choi, K., Hamilton, A.D., A dual channel fluorescence chemosensor for anions involving intermolecular excited state proton transfer (2001) Angew. Chem. Int. Ed, 40, pp. 3912-3915. , [CrossRef]
  • Smith, P.J., Reddington, M.V., Wilcox, C.S., Ion pair binding by a urea in chloroform solution (1992) Tetrahedron Lett, 33, pp. 6085-6088. , [CrossRef]
  • Fan, E., Van Arman, S.A., Kincaid, S., Hamilton, A.D., Molecular recognition: Hydrogen-bonding receptors that function in highly competitive solvents (1993) J. Am. Chem. Soc, 115, pp. 369-370. , [CrossRef]
  • Kirk, K.L., (1991) Biochemistry of the Elemental Halogens and Inorganic Halides, , 1st ed., Plenum Press: New York, NY, USA
  • Kleerekoper, M., The role of fluoride in the prevention of osteoporosis (1998) Endocrinol. Metab. Clin. N. Am, 27, pp. 441-452. , [CrossRef]
  • Zhang, S.-W., Swager, T.M., Fluorescent detection of chemical warfare agents: Functional group specific ratiometric chemosensors (2003) J. Am. Chem. Soc, 125, pp. 3420-3421. , [CrossRef] [PubMed]
  • Sohn, H., Létant, S., Sailor, M.J., Trogler, W.C., Detection of fluorophosphonate chemical warfare agents by catalytic hydrolysis with a porous silicon interferometer (2000) J. Am. Chem. Soc, 122, pp. 5399-5400. , [CrossRef]
  • Biswas, S., Gangopadhyay, M., Barman, S., Sarkar, J., Simple and efficient coumarin-based colorimetric and fluorescent chemosensor for F− detection: An ON1–OFF–ON2 fluorescent assay (2016) Sens. Actuators B Chem, 222, pp. 823-828. , [CrossRef]
  • Kim, W., Sahoo, S.K., Kim, G.-D., Choi, H.-J., Novel C3V-symmetric trindane based tripodal anion receptor with tris(Coumarin-urea) extension for optical sensing of bioactive anions (2015) Tetrahedron, 71, pp. 8111-8116. , [CrossRef]
  • Bregovic, V.B., Halasz, I., Basaric, N., Mlinaric-Majerski, K., Anthracene adamantylbisurea receptors: Switching of anion binding by photocyclization (2015) Tetrahedron, 71, pp. 9321-9327. , [CrossRef]
  • Duke, R.M., Gunnlaugsson, T., 3-Urea-1,8-naphthalimides are good chemosensors: A highly selective dual colorimetric and fluorescent ICT based anion sensor for fluoride (2011) Tetrahedron Lett, 52, pp. 1503-1505. , [CrossRef]
  • Zou, Q., Jin, J., Xu, B., Ding, L., Tian, H., New photochromic chemosensors for Hg2+ and F– (2011) Tetrahedron, 67, pp. 915-921. , [CrossRef]
  • Elmes, R.B.P., Gunnlaugsson, T., Luminescence anion sensing via modulation of MLCT emission from a naphthalimide–Ru(II)–polypyridyl complex (2010) Tetrahedron Lett, 51, pp. 4082-4087. , [CrossRef]
  • Jia, C., Wu, B., Liang, J., Huang, X., Yang, X.-J., A colorimetric and ratiometric fluorescent chemosensor for fluoride based on proton transfer (2010) J. Fluoresc, 20, pp. 291-297. , [CrossRef] [PubMed]
  • Veale, E.B., Tocci, M.G., Pfeffer, F.M., Kruger, P.E., Gunnlaugsson, T., Demonstration of bidirectional photoinduced electron transfer (PET) sensing in 4-amino-1,8-naphthalimide based thiourea anion sensors (2009) Org. Biomol. Chem, 7, pp. 3447-3454. , [CrossRef] [PubMed]
  • Gómez, D.E., Fabbrizzi, L., Liechelli, M.J., Why, on interaction of urea-based receptors with fluoride, beautiful colors develop (2005) J. Org. Chem, 70, pp. 5717-5720
  • Gómez, D.E., Fabbrizzi, L., Licchelli, M., Monzani, E., Urea vs. Thiourea in anion recognition (2005) Org. Biomol. Chem, 3, pp. 1495-1500
  • Liu, W., Wang, B., Zhang, C., Yin, X., Zhang, J., Theoretical study on a chemosensor for fluoride anion-based on a urea derivative (2014) Int. J. Quantum Chem, 114, pp. 138-144. , [CrossRef]
  • Pérez-Ruiz, R., Griesbeck, A.G., Sampedro, D., Computational study on fluoride recognition by an urea-activated phthalimide chemosensor (2012) Tetrahedron, 68, pp. 5724-5729. , [CrossRef]
  • Ghosh, A., Jose, D.A., Das, A., Ganguly, B.A., Density functional study towards substituent effects on anion sensing with urea receptors (2010) J. Mol. Model, 16, pp. 1441-1448. , [CrossRef] [PubMed]
  • Jin, R., Zhang, J., Theoretical investigation of chemosensor for fluoride anion based on amidophthalimide derivatives (2009) Theor. Chem. Acc, 124, pp. 225-234. , [CrossRef]
  • Muhammad, S., Liu, C., Zhao, L., Wu, S., Su, Z., A theoretical investigation of intermolecular interaction of a phthalimide based “on-off” sensor with different halide ions: Tuning its efficiency and electro-optical properties (2009) Theor. Chem. Acc, 122, pp. 77-86. , [CrossRef]
  • Jose, D.A., Singh, A., Das, A., Ganguly, B., A density functional study towards the preferential binding of anions to urea and thiourea (2007) Tetrahedron Lett, 48, pp. 3695-3698. , [CrossRef]
  • Turner, D.R., Paterson, M.J., Steed, J., Conformationally flexible, urea-based tripodal anion receptor: Solid-state, solution, and theoretical studies (2006) J. Org. Chem, 71, pp. 1598-1608. , [CrossRef] [PubMed]
  • Lee, J.Y., Cho, E.J., Mukamel, S., Nam, K.C., Efficient fluoride-selective fluorescent host: Experiment and theory (2004) J. Org. Chem, 69, pp. 943-950. , [CrossRef] [PubMed]
  • Herrera, R.P., Sgarzani, V., Bernardi, L., Ricci, A., Catalytic enantioselective friedel–crafts alkylation of indoles with nitroalkenes by using a simple thiourea organocatalyst Angew. Chem. Int. Ed. 2005, 44, pp. 6576-6579. , [CrossRef] [PubMed]
  • Dessole, G., Herrera, R.P., Ricci, A., H-bonding organocatalysed friedel-crafts alkylation of aromatic and heteroaromatic systems with nitroolefins (2004) Synlett, , [CrossRef]
  • Schön, E.-M., Marqués-López, E., Herrera, R.P., Alemán, C., Díaz, D.D., Exploiting Molecular Self-Assembly: From Urea-Based Organocatalysts to Multifunctional Supramolecular Gels (2014) Chem. Eur. J, 20, pp. 10720-10731. , [CrossRef] [PubMed]
  • Mukhopadhyay, S.M., (2011) Nanoscale Multifunctional Materials: Science and Applications
  • , , JohnWiley &
  • Sons, Inc.: Hoboken, NJ, USA
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2009) Gaussian 09, , Revision A.02
  • Gaussian, Inc.: Wallingford, CT, USA
  • Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields (1994) J. Phys. Chem, 98, pp. 11623-11627. , [CrossRef]
  • Hariharan, P.C., Pople, J.A., Influence of polarization functions on MO hydrogenation energies (1973) Theor. Chim. Acta, 28, pp. 213-222. , [CrossRef]
  • Barone, V., Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model (1998) J. Phys. Chem. A, 102, pp. 1995-2001. , [CrossRef]
  • Cossi, M., Rega, N., Scalmani, G., Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model (2003) J. Comput. Chem, 6, pp. 669-681. , [CrossRef] [PubMed]
  • Wolinski, K., Hilton, J.F., Pulay, P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations (1990) J. Am. Chem. Soc, 112, pp. 8251-8260. , [CrossRef]
  • Kim, B., Kim, Y.-H., Kim, Y., Kang, J., Lee, W., An anion sensing photonic gel by hydrogen bonding of anions to the N-allyl-N1-ethyl urea receptor (2014) J. Mater. Chem. A, 2, pp. 5682-5687. , [CrossRef]
  • Lin, Q., Zhu, X., Fu, Y.-P., Zhang, Y.-M., Fang, R., Yang, L.-Z., Wei, T.-B., Rationally designed anion-responsive-organogels: Sensing F- via reversible color changes in gel–gel states with specific selectivity (2014) Soft Matter, 10, pp. 5715-5723. , [CrossRef] [PubMed]
  • Rajamalli, P., Prasad, E., Non-amphiphilic pyrene cored poly(Aryl ether) dendron based gels: Tunable morphology, unusual solvent effects on the emission and fluoride ion detection by the self-assembled superstructures (2012) Soft Matter, 8, pp. 8896-8903. , [CrossRef]
  • Liu, J.-W., Yang, Y., Chen, C.-F., Ma, J.-T., Novel anion-tuning supramolecular gels with dual-channel response (2010) Reversible sol–gel Transition and Color Changes. Langmuir, 26, pp. 9040-9044. , [CrossRef] [PubMed]
  • Teng, M., Kuang, G., Jia, X., Gao, M., Li, Y., Wei, Y., Glycine-glutamic-acid-based organogelators and their fluoride anion responsive properties (2009) J. Mater. Chem, 19, pp. 5648-5654. , [CrossRef]
  • Shen, J.-S., Li, D.-H., Cai, Q.-G., Jiang, Y.-B., Highly selective iodide-responsive gel–sol state transition in supramolecular hydrogels (2009) J. Mater. Chem, 19, pp. 6219-6224. , [CrossRef]
  • Maeda, H., Anion-responsive supramolecular gels (2008) Chem. Eur. J, 14, pp. 11274-11282. , [CrossRef] [PubMed]
  • Griesbeck, A.G., Hanft, S., Miara, Y.D., Colorimetric detection of achiral anions and chiral carboxylates by a chiral thiourea–phthalimide dyad (2010) Photochem. Photobiol. Sci, 9, pp. 1385-1390. , [CrossRef] [PubMed]
  • Pérez-Ruiz, R., Díaz, Y., Goldfuss, B., Hertel, D., Meerholz, K., Griesbeck, A.G., Fluoride recognition by a chiral urea receptor linked to a phthalimide chromophore (2009) Org. Biomol, 7, pp. 3499-3504. , [CrossRef] [PubMed]
  • Roy, K., Wang, C., Smith, M.D., Pellechia, P.J., Shimizu, L.S., Alkali metal ions as probes of structure and recognition properties of macrocyclic pyridyl urea hosts (2010) J. Org. Chem., 75, pp. 5453-5460. , [CrossRef] [PubMed]
  • Benesi, H.G., Hildebrand, J., Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons (1949) J. Am. Chem. Soc, 71, pp. 2703-2707. , [CrossRef]
  • Endermitte, E., Saava, A., Karro, E., Exposure to High Fluoride Drinking Water and Risk of Dental Fluorosis in Estonia (2009) Int. J. Environ. Res. Public Health, 6, pp. 710-721. , [CrossRef] [PubMed]
  • Brooks, S.J., Evans, L.S., Gale, P.A., Hursthouse, M.B., Light, M.E., Twisted isophthalamide analogues (2005) Chem. Commun, , [CrossRef] [PubMed]