New methodologies and improved models in the estimation of solar irradiation

Autor: Antoñanzas Torres, Fernando Jesús

Tipo de documento: Tesis

Director/es: Martínez de Pisón Ascacíbar, Francisco Javier; Perpiñán Lamigueiro, Óscar ; 

Universidad: Universidad de La Rioja

Año: 2016 

Texto completo open access 

Resumen: El gran desarrollo que se esta viviendo en la actualidad y en los últimos años en el campo de la energía solar, de la agricultura tecnificada y del análisis climático requiere de un mejor conocimiento de la irradiación solar que recibe nuestro planeta. Aunque la radiación solar se puede medir con alta precisión con piranómetros, si estos están correctamente mantenidos, existe gran escasez de estos sensores en la mayoría de los países y regiones. Además, debido a la alta variabilidad espacial y temporal de la radiación solar, aquellos datos de estaciones cercanas al punto de interés pueden tener un alto grado de incertidumbre y no ser fiables para determinadas aplicaciones. Por lo tanto, la irradiación solar debe ser modelada y estimada en numerosas ocasiones. En las últimas décadas se han propuesto una gran variedad de técnicas para estimar la radiación solar a partir de otras variables meteorológicas comúnmente medidas como las temperaturas, la lluvia y la duración solar. Además, haciendo uso de los datos generados por sensores instalados en los satélites se han desarrollado modelos que son capaces de estimar la radiación solar con una mucho mayor covertura espacial. Además, con el desarrollo de las técnicas de inteligencia artificial, también denominadas de artificial intelligence, se pueden generar estimaciones con un alto grado de precisión. Sin embargo y a pesar del gran número de estudios e innovaciones en este campo, todavía existen algunos problemas e inconvenientes en todos estos métodos, que afectan directamente al error en las estimaciones de radiación solar. En este contexto, esta tesis se ha centrado en dos bloques de estudios principales: los modelos temporales y los modelos espaciales para la estimación de la irradiación solar. Inicialmente, se comenzó con modelos paramétricos tradicionales, que fueron comparados por su error y robustez, así como por su capacidad de generalización espacial. A partir de este punto, otras técnicas más complejas de inteligencia artificial como las máquinas de vector soporte con un procedimiento especial de optimizado se desarrollaron y los resultados se compararon con los de los modelos tradicionales. Para terminar con el bloque de modelos temporales, un gran número de modelos de satélite y de cielo claro fueron evaluados para analizar el origen de la incertidumbre y de los errores en estos modelos y su modo de propagación. Este análisis se realizó para la irradiación global y también para la directa en distintos escenarios dependiendo de la covertura nubosa. En relación a los modelos espaciales, se estudiaron comparativamente los errores de las estimaciones de satélite con las medidas en tierra y se unieron ambas fuentes de datos para realizar mapas más precisos de irradiación solar, no solo para la irradiación global horizontal, sino también para la irradiación efectiva en tres planos comúnmente usados para la energía solar fotovoltaica. En este bloque también se desarrolló una metodología para la mejora de la resolución espacial usando estimaciones de satélite y teniendo en cuenta la topografía del terreno y datos de varias estaciones con técnicas geoestadísticas. Los resultados de los métodos que se han propuesto muestran claramente una mejora respecto a los modelos anteriores allí donde se han evaluado. Algunos de los métodos propuestos en esta tesis han sido facilitados como código libre programado en el lenguaje R y se han facilitado como material suplementario de los artículos. Este código se generó con un claro objetivo de compartir los métodos con la comunidad científica y que fuesen útiles para futuros estudiosy aplicaciones de los métodos en regiones diferentes. Por lo tanto, este código libre es uno de los productos finales más relevantes de esta tesis. Para concluir, las contribuciones presentadas en esta tesis demuestran el gran campo de mejora que existía y todavía existe en la estimación temporal y espacial del principal input energético de nuestro planeta, la irradiación solar. --- The wide development of solar energy, technical agriculture and climate monitoring happening in these years requires a better knowledge of incoming solar irradiation. Although solar irradiation can be measured with pyranometers with high accuracy if correctly maintained, there is a lack of these sensors in most of the countries and regions. Besides, the high spatial and temporal variability of solar irradiation make measurements from relatively nearby stations not reliable for certain applications. As a result, solar irradiation must be frequently modelled and estimated. Many different approaches have been proposed in the last decades for generating solar irradiation out of other commonly measured meteorological variables such as temperatures, rainfall and sunshine duration. More recently, other techniques using sensors onboard satellites are able to provide solar irradiation with a higher spatial coverage. Furthermore, novel machine learning techniques can generate accurate estimations of solar irradiation. However, despite the massive development of all these techniques, still there are some drawbacks and issues in the estimation of solar irradiation directly affecting accuracy. In this context, this thesis focuses on two main blocks of studies: the temporal and the spatial methods for the estimation of solar irradiation. Beginning by traditional models, models were benchmarked based on the errors and robustness and their capacity of spatial generalization was also evaluated. From this point, more complex techniques such as support vector regression with a special optimization procedure were proposed and results were compared to parametric models. To end the block of temporal models, a wide range of satellite-based models were studied to evaluate the sources of uncertainty and error in the estimation of global and also beam irradiation under different scenarios. Regarding the spatial methods, satellite-based estimations were compared to on-ground measurements and then combined to generate more accurate maps of solar irradiation, not only for global horizontal irradiation but also for the effective irradiation on three different tilted angles. Furthermore, a very precise downscaling method for satellite-based estimations was proposed taking into account the topography and geostatistics using some on-ground records. The results of these proposed methods show a useful insight on the improvement of the estimation of solar irradiation. Some of the methods proposed in this thesis were provided as free R programming code, available as supplementary material in the articles. This code was generated with the aim of being useful for future replications and applications of the proposed methods in different regions and was one the most relevant final products of this thesis. To conclude, the contributions presented in this thesis prove the great field of improvement in the temporal and spatial estimation of the main energy input in our planet, the solar irradiation