Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine

Autor: Tello Moro, Javier; Torres-Pérez, R.; Grimplet , Jerome BrunoCarbonell Bejerano, PabloMartínez Zapater, José MiguelIbáñez Marcos, Javier

Tipo de documento: Artículo de revista

Revista: BMC Plant Biology. ISSN: 1471-2229. Año: 2015. Número: 1. Volumen: 15.

doi 10.1186/s12870-015-0622-2Texto completo open access 

SCIMAGO (datos correspondientes al año 2014):
SJR:
1,51  SNIP: 1,217 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Reisch, B.I., Owens, C.L., Cousins, P.S., Grape (2012), pp. 225-262. , In: Badenes ML, Byrne DH, editors. Fruit Breeding, Handbook of Plant Breeding. New York: SpringerBacilieri, R., Lacombe, T., Le Cunff, L., Di Vecchi-Staraz, M., Laucou, V., Genna, B., Genetic structure in cultivated grapevine is linked to geography and human selection (2013) BMC Plant Biol., 13, p. 25
  • Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape (2013) BMC Plant Biol., 13, p. 39
  • This, P., Lacombe, T., Thomas, M.R., Historical origins and genetic diversity of wine grapes (2006) Trends Genet, 22 (9), pp. 511-519
  • Terral, J.F., Tabard, E., Bouby, L., Ivorra, S., Pastor, T., Figueiral, I., Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars (2010) Ann Bot, 105 (3), pp. 443-455
  • Barnard, H., Dooley, A.N., Areshian, G., Gasparyan, B., Faull, K.F., Chemical evidence for wine production around 4000 BCE in the Late Chalcolithic Near Eastern highlands (2011) J Archaeol Sci, 38, pp. 977-984
  • Arroyo-García, R., Ruiz-Garcia, L., Bolling, L., Ocete, R., Lopez, M.A., Arnold, C., Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms (2006) Mol Ecol, 15 (12), pp. 3707-3714
  • Grassi, F., Labra, M., Imazio, S., Spada, A., Sgorbati, S., Scienza, A., Evidence of a secondary grapevine domestication centre detected by SSR analysis (2003) Theor Appl Genet, 107 (7), pp. 1315-1320
  • Picq, S., Santoni, S., Lacombe, T., Latreille, M., Weber, A., Ardisson, M., A small XY chromosomal region explains sex determination in wild dioecious V (2014) vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol., 14, p. 229
  • Cattonaro, F., Testolin, R., Scalabrin, S., Morgante, M., Di Gaspero, G., Genetic diversity in the grapevine germplasm (2014), 1, pp. 683-704. , In: Genomics of plant genetic resources. Edited by Tuberosa R, Graner A, Frison E. Dordrecht, The Netherlands: SpringerHouel, C., Martin-Magniette, M.L., Nicolas, S.D., Lacombe, T., Cunff, L., Franck, D., Genetic variability of berry size in the grapevine (Vitis vinifera L.) (2013) Aust J Grape Wine Res, 19 (2), pp. 208-220
  • Doebley, J.F., Gaut, B.S., Smith, B.D., The molecular genetics of crop domestication (2006) Cell, 127, pp. 1309-1321
  • Gil, M., Pascual, O., Gómez-Alonso, S., García-Romero, E., Hermosín-Gutiérrez, I., Zamora, F., Influence of berry size on red wine colour and composition (2015) Aust J Grape Wine Res, 21 (2), pp. 200-212
  • Boursiquot, J.M., Dessup, M., Rennes, C., Distribution des principaux caractères phénologiques et technologiques chez Vitis vinifera L (1995) Vitis, 34 (1), pp. 31-35
  • Negrul, A.M., Origin and classification of cultured grapevine (1946), 1, pp. 159-216. , In: Baranov A, Kai YF, Lazarevski MA, Negrul AM, Palibin TV, Prosmoserdov NN, editors. The Ampelography of the USSR. Moscow: PischepromizdatAradhya, M.K., Dangl, G.S., Prins, B.H., Boursiquot, J.M., Walker, M.A., Meredith, C.P., Genetic structure and differentiation in cultivated grape, Vitis vinifera L (2003) Genet Res, 81 (3), pp. 179-192
  • Mejia, N., Gebauer, M., Munoz, L., Hewstone, N., Munoz, C., Hinrichsen, P., Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny (2007) Am J Enol Vitic, 58 (4), pp. 499-507
  • Costantini, L., Battilana, J., Lamaj, F., Fanizza, G., Grando, M.S., Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes (2008) BMC Plant Biol., 8, p. 38
  • Cabezas, J.A., Cervera, M.T., Ruiz-Garcia, L., Carreno, J., Martinez-Zapater, J.M., A genetic analysis of seed and berry weight in grapevine (2006) Genome, 49 (12), pp. 1572-1585
  • Doligez, A., Bouquet, A., Danglot, Y., Lahogue, F., Riaz, S., Meredith, C.P., Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight (2002) Theor Appl Genet, 105 (5), pp. 780-795
  • Fanizza, G., Lamaj, F., Costantini, L., Chaabane, R., Grando, M.S., QTL analysis for fruit yield components in table grapes (Vitis vinifera) (2005) Theor Appl Genet, 111 (4), pp. 658-664
  • Doligez, A., Bertrand, Y., Farnos, M., Grolier, M., Romieu, C., Esnault, F., New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.) (2013) BMC Plant Biol, 13 (217), pp. 1-16
  • Beavis, W.D., QTL analyses: power, precision, and accuracy (1998), pp. 145-162. , In: Paterson AH, editor. Molecular dissection of complex traits. Boca Ration: CRC PressZhu, C., Gore, M., Buckler, E.S., Yu, J., Status and prospects of association mapping in plants (2008) Plant Genome, 1 (1), pp. 5-20
  • Rafalski, J.A., Association genetics in crop improvement (2010) Curr Opin Plant Biol, 13, pp. 174-180
  • Fournier-Level, A., Cunff, L., Gomez, C., Doligez, A., Ageorges, A., Roux, C., Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study (2009) Genetics, 183 (3), pp. 1127-1139
  • This, P., Lacombe, T., Cadle-Davidson, M., Owens, C.-L., Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1 (2007) Theor Appl Genet, 114, pp. 723-730
  • Emanuelli, F., Battilana, J., Costantini, L., Cunff, L., Boursiquot, J.-M., This, P., A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L) (2010) BMC Plant Biol, 10, p. 241
  • Vargas, A.-M., Fajardo, C., Borrego, J., Andrés, M.T., Ibáñez, J., Polymorphisms in VvPel associate with variation in berry texture and bunch size in the grapevine (2013) Aust J Grape Wine Res, 19, pp. 193-207
  • Vargas, A.-M., Cunff, L., This, P., Ibáñez, J., Andrés, M.-T., VvGAl1 polymorphisms associate with variation for berry traits in grapevine (2013) Euphytica, 191 (1), pp. 85-98
  • Mejia, N., Soto, B., Guerrero, M., Casanueva, X., Houel, C., Angeles, M.M.D., Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine (2011) BMC Plant Biol, 11 (1), p. 57
  • Fernandez, L., Le Cunff, L., Tello, J., Lacombe, T., Boursiquot, J.M., Fournier-Level, A., Haplotype diversity of VvTFL1A gene and association with cluster traits in grapevine (V (2014) vinifera). BMC Plant Biol., 14, p. 209
  • Olsen, A.N., Ernst, H.A., Lo Leggio, L., Skriver, K., NAC transcription factors: structurally distinct, functionally diverse (2005) Trends Plant Sci, 10 (2), pp. 79-87
  • Puranik, S., Sahu, P.P., Srivastava, P.S., Prasad, M., NAC proteins: regulation and role in stress tolerance (2012) Trends Plant Sci, 17 (3), pp. 369-381
  • Ernst, H.A., Olsen, A.N., Skriver, K., Larsen, S., Lo Leggio, L., Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors (2004) EMBO Rep, 5 (3), pp. 297-303
  • Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., Tasaka, M., Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant (1997) Plant Cell, 9, pp. 841-857
  • Duval, M., Hsieh, T.F., Kim, S.Y., Thomas, T.L., Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily (2002) Plant Mol Biol, 50, pp. 237-248
  • Sablowski, R.W.M., Meyerowitz, E.-M., A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA (1998) Cell, 92, pp. 93-103
  • Ko, J.-H., Yang, S.H., Park, A.H., Lerouxel, O., Han, K.-H., ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana (2007) Plant J, 50, pp. 1035-1048
  • Vroemen, C.W., Mordhorst, A.P., Albrecht, C., Kwaaitaal, M.A.C.J., Vries, A.D., The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis (2003) Plant Cell, 15, pp. 1563-1577
  • Hickman, R., Hill, C., Penfold, C.A., Breeze, E., Bowden, L., Moore, J.D., A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves (2013) Plant J, 75, pp. 26-39
  • Le, D.T., Nishiyama, R., Watanabe, Y., Mochida, K., Yamaguchi-Shinozaki, K., Shinozaki, K., Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress (2011) DNA Res, 18, pp. 263-276
  • Nuruzzaman, M., Manimekalai, R., Sharoni, A.M., Satoh, K., Kondoh, H., Ooka, H., Genome-wide analysis of NAC transcription factor family in rice (2010) Gene, 465, pp. 30-44
  • Zhong, R., Lee, C., Ye, Z.-H., Functional characterization of poplar wood-associated NAC domain transcription factors (2009) Plant Physiol, 52, pp. 1044-1055
  • Singh, A.K., Sharma, V., Pal, A.K., Acharya, V., Ahuja, P.S., Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.) (2013) DNA Res, 20, pp. 403-423
  • Berger, Y., Harpaz-Saad, S., Brand, A., Melnik, H., Sirding, N., Alvarez, J.P., The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves (2009) Development, 136, pp. 823-832
  • Hénanff, G., Profizi, C., Courteaux, B., Rabenoelina, F., Gérard, C., Clément, C., Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance (2013) J Exp Biol, 64 (16), pp. 4877-4893
  • Wang, N., Zheng, Y., Xin, H., Fang, L., Li, S., Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera (2013) Plant Cell Rep, 32, pp. 61-75
  • Grimplet, J., Hemert, J., Carbonell-Bejerano, P., Diaz-Riquelme, J., Dickerson, J., Fennell, A., Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences (2012) BMC Res Notes, 5, p. 213
  • Cenci, A., Guignon, V., Roux, N., Rouard, M., Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots (2014) Plant Mol Biol, 85, pp. 63-80
  • Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J.L., Meyerowitz, E.-M., Genome-wide analysis of gene expression during early Arabidopsis flower development (2006) Plos Genetics, 2 (7)
  • Fernandez, L., Ageorges, A., Torregrosa, L., A putative NAP homolog specifically expressed during grapevine flower and berry development (2006) Vitis, 45 (1), pp. 51-52
  • Coombe, B.G., Adoption of a system for identifying grapevine growth stages (1995) Aust J Grape Wine Res, 1 (2), pp. 104-110
  • Tello, J., Aguirrezábal, R., Hernaiz, S., Larreina, B., Montemayor, M.I., Vaquero, E., Multicultivar and multivariate study of the natural variation for grapevine bunch compactness (2015) Aust J Grape Wine Res, 21 (2), pp. 277-289
  • Tello, J., Ibáñez, J., Evaluation of indexes for the quantitative and objective estimation of grapevine bunch compactness (2014) Vitis, 53 (1), pp. 9-16
  • Vélez, M.D., Ibáñez, J., Assessment of the uniformity and stability of grapevine cultivars using a set of microsatellite markers (2012) Euphytica, 184, pp. 419-432
  • Weising, K., Gardner, R.C., A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms (1999) Genome, 42, pp. 9-19
  • Chung, S.M., Staub, J.E., The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa (2003) Theor Appl Genet, 107 (4), pp. 757-767
  • Ibáñez, J., Vargas, A.M., Palancar, M., Borrego, J., Andrés, M.T., Genetic relationships among table-grape varieties (2009) Am J Enol Vitic, 60 (1), pp. 35-42
  • Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla (2007) Nature, 449 (7161), pp. 463-467
  • Langmead, B., Salzberg, S.L., Fast gapped-read alingment with Bowtie 2 (2012) Nat Methods, 9, pp. 357-359
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., The sequence alignment/map format and SAMtools (2009) Bioinformatics, 25 (16), pp. 2078-2079
  • Thorvaldsdóttir, H., Robinson, J.T., Mesirov, J.P., Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration (2012) Brief Bioinform, 14 (2), pp. 178-192
  • Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S., TASSEL: software for association mapping of complex traits in diverse samples (2007) Bioinformatics, 23 (19), pp. 2633-2635
  • Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T.M., Wang, L., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain W1118
  • iso-2
  • iso-3 (2012) Fly (Austin), 6 (2), pp. 80-92
  • Bromberg, Y., Rost, B., SNAP: predict effect of non-synonymous polymorphisms on function (2007) Nucleic Acids Res, 35 (11), pp. 3823-3835
  • Choi, Y.A., Sims, G.E., Murphy, S., Miller, J.R., Chan, A.P., Predicting the functional effect of amino acid substitutions and indels (2012) PLoS One, 7 (10), p. e46688
  • Sabarinathan, R., Tafer, H., Seemann, S.E., Hofacker, I.L., Stadler, P.F., Gorodkin, J., The RNAsnp web server: predicting SNP effects on local RNA secondary structure (2013) Nucleic Acids Res, 41, pp. W475-W479
  • Reuter, J.S., Mathews, D.H., RNAstructure: software for RNA secondary structure prediction and analysis (2010) BMC Bioinformatics., 11, p. 129
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Peer, Y., PlantCARE, a database of plant cis-acting regulaturo elements and a portal to tools for in silico analysis of promoter sequences (2002) Nucleic Acids Res, 30 (1), pp. 325-327
  • Qin, Z.S., Niu, T., Liu, J.S., Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms (2002) Am J Hum Genet, 71, pp. 1242-1247
  • Stephens, M., Donnelly, P., A comparison of bayesian methods for haplotype reconstruction from population genotype data (2003) Am J Hum Genet, 73, pp. 1162-1169
  • Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: Detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1 (1). , vev003
  • Bandelt, H.-J., Forster, P., Röhl, A., Median-joining networks for inferring intraspecific phylogenies (1999) Mol Biol Evol, 16 (1), pp. 37-48
  • Nei, M., Molecular evolutionary genetics (1987), New York: Columbia University PressWatterson, G.A., On the number of segregating sites in genetic models without recombination (1975) Theor Popul Biol, 7 (2), pp. 256-276
  • Librado, P., Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data (2009) Bioinformatics, 25 (11), pp. 1451-1452
  • Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism (1989) Genetics, 123, pp. 585-595
  • Fu, Y.X., Li, W.H., Statistical tests of neutrality of mutations (1993) Genetics, 133 (3), pp. 693-709
  • Pritchard, J.K., Stephens, M., Donnely, P., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959
  • Evanno, G., Regnaut, S., Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study (2005) Mol Ecol, 14 (8), pp. 2611-2620
  • Earl, D., vonHoldt, B.M., STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method (2012) Conserv Genet Resour, 4, pp. 359-361
  • Jakobsson, M., Rosenberg, N.A., CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure (2007) Bioinformatics, 23 (14), pp. 1801-1806
  • Rosenberg, N.A., DISTRUCT: a program for the graphical display of population structure (2004) Mol Ecol Notes, 4, pp. 137-138
  • Ruggieri, V., Francese, G., Sacco, A., D'Alessandro, A., Manuela, M., Parisi, M.G., An association mapping approach to identify favoruable alleles for tomato fruit quality breeding (2014) BMC Plant Biol., 14, p. 337
  • Wang, J., An estimator for pairwise relatedness using molecular markers (2002) Genetics, 160, pp. 1203-1215
  • Pew, J., Muir, P.H., Wang, J., Frasier, T.R., Related: an R package for analysing pairwise relatedness from codominant molecular markers (2015) Mol Ecol Resour, 15, pp. 557-561
  • Lacombe, T., Boursiquot, J.-M., Laucou, V., Vecchi, S.M., Péros, J.P., This, P., Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.) (2013) Theor Appl Genet, 126, pp. 401-414
  • Andrés, M.T., Benito, A., Pérez-Rivera, G., Ocete, R., López, M.A., Gaforio, L., Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines (2012) Mol Ecol, 21, pp. 800-816
  • Yu, J.M., Pressoir, G., Briggs, W.H., Bi, I.V., Yamasaki, M., Doebley, J.F., A unified mixed-model method for association mapping that accounts for multiple levels of relatedness (2006) Nat Genet, 38 (2), pp. 203-208
  • Duggal, P., Gillanders, E.M., Holmes, T.N., Bailey-Wilson, J.E., Establishing an adjusted p-value threshold to control the family-wide type I error in genome wide association studies (2008) BMC Genomics., 9, p. 516
  • Carter, J.G., West, S.K., Painter, S., Haynes, R.J., Churchill, A.J., β-Defensin 1 haplotype associated with postoperative endophthalmitis (2010) Acta Ophthalmol, 88, pp. 786-790
  • Patterson, N., Price, A.L., Reich, D., Population structure and eigenanalysis (2006) Plos Genetics, 2 (12), p. e190
  • Cunha, J., Zinelabidine, L.H., Teixeira-Santos, M., Brazao, J., Fevereiro, P., Martínez-Zapater, J.M., Grapevine cultivar "
  • Alfrocheiro"
  • or "
  • Bruñal"
  • plays a primary role in the relationship among Iberian grapevines (2015) Vitis, 54, pp. 59-65
  • Akey, J., Jin, L., Xiong, M., Haplotypes vs single marker linkage disequilibrium tests: what do we gain? (2001) Eur J Hum Genet, 9, pp. 291-300
  • Tzeng, J.-Y., Zhang, D., Haplotype-based association analysis via variance-components score test (2007) Am J Hum Genet, 81, pp. 927-938
  • Considine, J.A., Knox, R.B., Development and histochemistry of the pistil of the grape, Vitis vinifera (1979) Ann Bot, 43 (1), pp. 11-22
  • Kou, X., Watkins, C.B., Gan, S.-S., Arabidopsis AtNAP regulates fruit senescence (2012) J Exp Biol, 63 (17), pp. 6139-6147
  • Riahi, L., Zoghlami, N., Dereeper, A., Laucou, V., Mliki, A., This, P., Molecular characterization and evolutionary pattern of the 9-cis-epoxycarotenoid dioxygenase NCED1 gene in grapevine (2013) Mol Breed, 32, pp. 253-266
  • Riahi, L., Zoghlami, N., Dereeper, A., Laucou, V., Mliki, A., This, P., Single nucleotide polymorphism and haplotype diversity of the gene NAC4 in grapevine (2013) Ind Crops Prod, 43, pp. 718-724
  • Chao, M., Yin, Z., Hao, D., Zhang, J., Song, H., Ning, A., Variation in Rubisco activase (RCAβ) gene promoters and expression in soybean [Glycine max (L.) Merr.] (2014) J Exp Biol, 65 (1), pp. 47-55
  • Lijavetzky, D., Cabezas, J.A., Ibáñez, A., Rodriguez, V., Martínez-Zapater, J.M., High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L) by combining a re-sequencing approach and SNPlex technology (2007) BMC Genomics, 8, p. 424
  • Chamary, J.V., Hurst, L.D., The price of silent mutations (2009) Sci Am, 300 (6), pp. 46-53
  • Myles, S., Peiffer, J., Brown, P.J., Ersoz, E.S., Zhang, Z.W., Costich, D.E., Association mapping: critical considerations shift from genotyping to experimental design (2009) Plant Cell, 21 (8), pp. 2194-2202
  • Clark, R.M., Wagler, T.N., Quijada, P., Doebley, J., A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture (2006) Nat Genet, 38 (5), pp. 594-597
  • Fasoli, M., Dal Santo, S., Zenoni, S., Tomielli, G.B., Farina, L., Zamboni, A., The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program (2012) Plant Cell, 24 (9), pp. 3489-3505
  • Guo, Y., Gan, S., AtNAP, a NAC family transcription factor, has an important role in leaf senescence (2006) Plant J, 46, pp. 601-612
  • Chen, Y., Qiu, K., Kuai, B., Ding, Y., Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis 'Viridiflavus') (2011) Physiol Plant, 142, pp. 361-371
  • Kalivas, A., Pasentsis, K., Argiriou, A., Tsaftaris, A.S., Isolation, characterization, and expression analysis of an NAP-like cDNA from crocus (Crocus sativus L.) (2010) Plant Mol Biol Rep, 28, pp. 654-663
  • Yang, J., Worley, E., Udvardi, M., A NAP-AA03 regulatory module promotes chlorophyill degradation via ABA biosynthesis in Arabidopsis leaves (2014) Plant Cell, 26 (12), pp. 4862-4874
  • Zhang, K., Gan, S.-S., An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves (2012) Plant Physiol, 158, pp. 961-969
  • Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice (2014) Proc Natl Acad Sci, 111 (27), pp. 10013-10018
  • Vriezen, W.H., Feron, R., Maretto, F., Keijman, J., Mariani, C., Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set (2008) New Phytologist, 177, pp. 60-76
  • Owen, S.J., Lafond, M.D., Bowen, P., Bogdanoff, C., Usher, K., Abrams, S.R., Profiles of abcisic acid and its catabolites in developing merlot grape (Vitis vinifera) berries (2009) Am J Enol Vitic, 60 (3), pp. 277-284
  • Antolín, M.C., Baigorri, H., Luis, I., Aguirrezábal, F., Geny, L., Broquedis, M., ABA during reproductive development in non-irrigated grapevines (Vitis vinifera L. cv. Tempranillo) (2003) Aust J Grape Wine Res, 9, pp. 169-176
  • Kühn, N., Arce-Johnson, P., Pollination: a key event controlling the expression of genes related to phytohormone biosynthesis during grapevine berry formation (2012) Plant Signal Behav, 7 (1), pp. 7-11
  • Williams, S.M., Haines, J.L., Correcting away the hidden heritability (2011) Ann Hum Genet, 75, pp. 348-350
  • Bush, W.S., Moore, J.H., Chapter 11: Genome-wide association studies (2012) PLoS Comput Biol, 8 (12), p. e1002822