On a new family of high-order iterative methods for the matrix pth root

Autor: Amat, S.; Ezquerro Fernández, José AntonioHernández Verón, Miguel Angel

Tipo de documento: Artículo de revista

Revista: Numerical Linear Algebra with Applications. ISSN: 1070-5325. Año: 2015. Número: 4. Volumen: 22. Páginas: 585-.

doi 10.1002/nla.1974Texto completo open access 

SCIMAGO (datos correspondientes al año 2014):
SJR:
1,21  SNIP: 1,227 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Lancaster, P., (1969) Theory of Matrices, , Academic Press: New York
  • Higham, N.J., Newton's method for the matrix square root (1986) Mathematics of Computation, 46 (174), pp. 537-549
  • Iannazzo, B., On the Newton method for the matrix pth root (2006) SIAM Journal on Matrix Analysis and Applications, 28 (2), pp. 503-523
  • Guo, C.-H., Higham, N.J., A Schur-Newton method for the matrix pth root and its inverse (2006) SIAM Journal on Matrix Analysis and Applications, 28 (3), pp. 788-804
  • Iannazzo, B., A note on computing the matrix square root (2003) Calcolo, 40, pp. 273-283
  • Petkov, M., Boršukova, S., A modified Newton method for obtaining roots of matrices (1974) Annuaire de l'Universite de Sofia "
  • St. Kliment Ohridski"
  • . Faculte de Mathematiques et Informatique, 66, pp. 341-347. , in Bulgarian)
  • Smith, M.I., A Schur algorithm for computing matrix pth roots (2003) SIAM Journal on Matrix Analysis and Applications, 24 (4), pp. 971-989
  • Guo, C.-H., On Newton's method and Halley's method for the principal pth root of a matrix (2010) Linear Algebra and its Applications, 432 (8), pp. 1905-1922
  • Iannazzo, B., A family of rational iterations and its application to the computation of the matrix pth root (2008) SIAM Journal on Matrix Analysis and Applications, 30 (4), pp. 1445-1462
  • Amat, S., Ezquerro, J.A., Hernández-Verón, M.A., Approximation of inverse operators by a new family of high-order iterative methods (2014) Numerical Linear Algebra with Applications, 21, pp. 629-644
  • Deanman, E.D., Beavers, A.N., The matrix sign function and computations in systems (1976) Applied Mathematics and Computation, 2 (1), pp. 63-94
  • Cheng, S.H., Higham, N.J., Kenney, C.S., Laub, A.J., Approximating the logarithm of a matrix to specified accuracy (2001) SIAM Journal on Matrix Analysis and Applications, 22 (4), pp. 1112-1125
  • Argyros, I.K., The convergence of a Halley-Chebyshev-type method under Newton-Kantorovich hypotheses (1993) Applied Mathematics Letters, 6 (5), pp. 71-74
  • Argyros, I.K., A convergence analysis of Newton's method under the gamma-condition in Banach spaces (2009) Applicationes Mathematicae, 36 (2), pp. 225-239
  • Ezquerro, J.A., Hernández, M.A., New Kantorovich-type conditions for Halley's method (2005) Applied Numerical Analysis and Computational Mathematics, 2 (1), pp. 70-77
  • Hernández, M.A., Salanova, M.A., Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method (2000) Journal of Computational and Applied Mathematics, 126, pp. 131-143
  • Lin, M., A residual recurrence for Halley's method for the matrix pth root (2010) Linear Algebra and its Applications, 432 (11), pp. 2928-2930
  • Higham, N.J., Al-Mohy, A.H., (2010), Computing Matrix Functions, The University of Manchester, MIMS EPrint, 18
  • Higham, N.J., Lin, L., An improved Schur-Pade algorithm for fractional powers of a matrix and their Fréchet derivatives (2013) SIAM Journal on Matrix Analysis and Applications, 34 (3), pp. 1341-1360
  • Iannazzo, B., Manasse, C., A Schur logarithmic algorithm for fractional powers of matrices (2013) SIAM Journal on Matrix Analysis and Applications, 34 (2), pp. 794-813