High order transfer maps for perturbed Keplerian motion

Autor: Armellín , Roberto; Wittig, A.; 

Tipo de documento: Artículo de revista

Revista: Celestial mechanics and dynamical astronomy. ISSN: 0923-2958. Año: 2015. Número: 4. Volumen: 122. Páginas: 333-358.

doi 10.1007/s10569-015-9621-8Texto completo open access 

SCIMAGO (datos correspondientes al año 2014):
SJR:
1,479  SNIP: 1,781 

CIRC: GRUPO A - EXCELENCIA

Referencias:

  • Aksnes, K., A second-order artificial satellite theory based on an intermediate orbit (1970) Astron. J., 75, pp. 1066-1076
  • Berz, M., The new method of TPSA algebra for the description of beam dynamics to high orders (1986) Technical Report AT-6:ATN-86-16, Los Alamos National Laboratory
  • Berz, M., The method of power series tracking for the mathematical description of beam dynamics (1987) Nucl. Instrum. Methods, A258, p. 431
  • Berz, M., (1999) Differential algebraic techniques. In: Tigner, M., Chao, A. (eds.) Handbook of Accelerator Physics and Engineering, , World Scientific, New York
  • Berz, M., (1999) Modern Map Methods in Particle Beam Physics, , Academic Press, London
  • Berz, M., Makino, K., COSY INFINITY version 9 reference manual (2006) MSU Report MSUHEP-060803, Michigan State University, East Lansing, MI 48824, 84p
  • Bogoliuvov, N.N., Mitropolski, Y.A., (1961) Asymptotic Methods in the Theory of Nonlinear Oscillations, , Gordon and Breach, New York
  • Brouwer, D., Solution of the problem of artificial satellite theory without drag (1959) Astron. J., 64, pp. 379-397
  • Campbell, J.A., Jeffreys, W.H., Equivalence of the perturbation theories of Hori and Deprit (1970) Celest. Mech., 2, pp. 467-473
  • Deprit, A., Canonical transformations depending on a small parameter (1969) Celest. Mech., 1, pp. 12-30
  • Graf, O.F., Bettis, D.G., Modified multirevolution integration methods for satellite orbit computation (1975) Celest. Mech. Dyn. Astron., 11, pp. 433-448
  • Healy, L.M., Orbit propagation with Lie transfer maps in the perturbed Kepler problem (2003) Celest. Mech., 85, pp. 175-207
  • Hoots, F.R., Roehrich, R.L., Models for propagation of the NORAD element sets (1980) Spacetrack Report no. 3, US Air Force Aerospace Defense Command, , Colorado Springs: Col
  • Hori, G., Theory of general perturbation with unspecified canonical variable (1966) Publ. Astron. Soc. Jpn., 18, pp. 287-296
  • Kinoshita, H., Third-order solution of an artificial satellite theory (1977) Special Report No, p. 379. , Smithsonian Astrophysical Observatory, Cambridge, Mass
  • Kozai, Y., Second-order solution of artificial satellite theory without air drag (1962) Astron. J., 67, pp. 446-461
  • Lara, M., San-Juan, J.F., López-Ochoa, L.M., Cefola, P.J., On the third-body perturbations of high-altitude orbits (2012) Celest. Mech. Dyn. Astron., 113, pp. 435-452
  • Long, A.C., Cappellari, J.O., Velez, C.E., Fuchs, A.J., Goddard trajectory determination system (GTDS) (1989) Mathematical Theory Revision 1 CSC/TR-89/6001
  • Lyddane, R.N., Small eccentricities or inclinations in Brouwer theory of the artificial satellite (1963) Astron. J., 68, pp. 555-558
  • McClain, W.D., A recursively formulated first-order semianalytic artificial satellite theory based on the generalized method of averaging, volume 1: the generalized method of averaging applied to the artificial satellite problem (1977) Computer Sciences Corporation CSC/TR-77/6010
  • Métris, G., Exertier, P., Semi-analytical theory of the mean orbital motion (1995) Astron. Astrophys., 294, pp. 278-286
  • Montenbruck, O., Gill, E., (2000) Satellite Orbits: Models, Methods, and Applications, , Springer, Berlin
  • Morselli, A., Armellin, R., Di Lizia, P., Bernelli-Zazzera, F., A high order method for orbital conjunctions analysis: sensitivity to initial uncertainties (2014) Adv. Space Res, 53, pp. 490-508
  • Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues (2002) J. Geophys. Res. Space Phys., 107, pp. 1978-2012
  • San-Juan, J.F., ATESAT: automatization of theories and ephemeris in the artificial satellite problem (1994) Tech. Rep. no. CT/TI/MS/MN/94-250, CNES, , Toulouse: France
  • San-Juan, J.F., (1998) ATESAT: review and improvements. Study of a family of analytical models of the artificial satellite generated by ATESAT and their numerical validation versus PSIMU and MSLIB. Tech. Rep. no. DGA/T/TI/MS/MN/97-258, CNES, , Toulouse: France
  • Vallado, D.A., Crawford, P., Hujsak, R., Kelso, T.S., Revisiting spacetrack report# 3 (2006) AIAA J., 2006-6753, 88p
  • Valli, M., Armellin, R., Di Lizia, P., Lavagna, M., Nonlinear mapping of uncertainties in celestial mechanics (2013) J. Guid. Control Dyn., 36, pp. 48-63
  • Walker, M.J.H., Owens, J., Ireland, B., A set of modified equinoctial orbit elements (1985) Celest. Mech. Dyn. Astron., 36, pp. 409-419
  • Walker, M.J.H., Erratum—a set of modified equinoctial orbit elements (1986) Celest. Mech. Dyn. Astron., 38, pp. 391-392
  • Wittig, A., Di Lizia, P., Armellin, R., Makino, K., Bernelli-Zazzera, F., Berz, M., Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting. Celest. Mech. Dyn (2015) Astron