An impaired ubiquitin ligase complex favors initial growth of auxotrophic yeast strains in synthetic grape must

Autor: Mangado, A.;  , Morales Calvo, Pilar; Novo, M.; Quirós Asensio, ManuelGonzález García, Ramón

Tipo de documento: Artículo de revista

Revista: Applied Microbiology and Biotechnology. ISSN: 0175-7598. Año: 2015. Número: 3. Volumen: 99. Páginas: 1273-1286.

Texto completo open access 

SCIMAGO (datos correspondientes al año 2014):
1,174  SNIP: 1,358 



  • Abe, F., Iida, H., Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2 (2003) Mol Cell Biol, 23, pp. 7566-7584. , COI: 1:CAS:528:DC%2BD3sXosFOgsbY%3D, PID: 14560004
  • Baganz, F., Hayes, A., Farquhar, R., Butler, P.R., Gardner, D.C.J., Oliver, S.G., Quantitative analysis of yeast gene function using competition experiments in continuous culture (1998) Yeast, 14, pp. 1417-1427. , COI: 1:CAS:528:DyaK1cXnvVKrsbw%3D, PID: 9848233
  • Bai, F.Y., Liang, H.Y., Jia, J.H., Taxonomic relationships among the taxa in the Candida guilliermondii complex, as revealed by comparative electrophoretic karyotyping (2000) Int J Syst Evol Microbiol, 50, pp. 417-422. , COI: 1:CAS:528:DC%2BD3cXhtVequro%3D, PID: 10826830
  • Beaudenon, S.L., Huacani, M.R., Wang, G., McDonell, D.P., Huibregtse, J.M., Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae (1999) Mol Cell Biol, 19, pp. 6972-6979. , COI: 1:CAS:528:DyaK1MXmtlals7s%3D, PID: 10490634
  • Belgareh-Touzé, N., Léon, S., Erpapazoglou, Z., Stawiecka-Mirota, M., Urban-Grimal, D., Haguenauer-Tsapis, R., Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking (2008) Biochem Soc Trans, 36, pp. 791-796. , PID: 18793138
  • Cadière, A., Ortiz-Julien, A., Camarasa, C., Dequin, S., Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway (2011) Metab Eng, 13, pp. 263-271. , PID: 21300171
  • Cadière, A., Aguera, E., Caillé, S., Ortiz-Julien, A., Dequin, S., Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution (2012) Food Microbiol, 32, pp. 332-337. , PID: 22986198
  • Chae, H.Z., Kim, I.H., Kim, K., Rhee, S.G., Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae (1993) J Biol Chem, 268, pp. 16815-16821. , COI: 1:CAS:528:DyaK3sXlvFKqtbY%3D, PID: 8344960
  • Cingolani, P., Patel, V.M., Coon, M., Nguyen, T., Land, S.J., Ruden, D.M., Lu, X., Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift (2012) Front Genet, 3, p. 35. , PID: 22435069
  • Cohen, M., Stutz, F., Belgareh, N., Haguenauer-Tsapis, R., Dargemont, C., Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23 (2003) Nat Cell Biol, 5, pp. 661-667. , COI: 1:CAS:528:DC%2BD3sXkvFeru7g%3D, PID: 12778054
  • Cohen, M., Stutz, F., Dargemont, C., Deubiquitination, a new player in golgi to endoplasmic reticulum retrograde transport (2003) J Biol Chem, 278, pp. 51989-51992. , COI: 1:CAS:528:DC%2BD3sXpvFCqt70%3D, PID: 14593109
  • Conrad, T.M., Lewis, N.E., Palsson, B.O., Microbial laboratory evolution in the era of genome-scale science (2011) Mol Syst Biol, 7, p. 509. , PID: 21734648
  • Daran-Lapujade, P., Jansen, M.L.A., Daran, J.M., Van Gulik, W., De Winde, J.H., Pronk, J.T., Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae: a chemostat culture study (2004) J Biol Chem, 279, pp. 9125-9138. , COI: 1:CAS:528:DC%2BD2cXhs1Omsrc%3D, PID: 14630934
  • Ding, J., Bierma, J., Smith, M.R., Poliner, E., Wolfe, C., Hadduck, A.N., Zara, S., Bakalinsky, A.T., Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement (2013) Appl Microbiol Biotechnol, 97, pp. 7405-7416. , COI: 1:CAS:528:DC%2BC3sXhtVGktrbF, PID: 23828602
  • Dunham, M.J., Experimental evolution in yeast: a practical guide (2010) Methods in enzymology, pp. 487-507. , Weissman J, Guthrie C, Fink G, (eds), Guide to yeast genetics: functional genomics, proteomics, and other systems analysis, 470, Elsevier, London, UK:
  • Dupré, S., Urban-Grimal, D., Haguenauer-Tsapis, R., Ubiquitin and endocytic internalization in yeast and animal cells (2004) Biochim Biophys Acta, 1695, pp. 89-111. , PID: 15571811
  • García-Alcalde, F., Okonechnikov, K., Carbonell, J., Cruz, L.M., Götz, S., Tarazona, S., Dopazo, J., Conesa, A., Qualimap: evaluating next-generation sequencing alignment data (2012) Bioinformatics, 28, pp. 2678-2679. , PID: 22914218
  • Gietz, R.D., Woods, R.A., Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method (2002) Meth Enzymol, 350, pp. 87-96. , COI: 1:CAS:528:DC%2BD38XlsVaqs7g%3D, PID: 12073338
  • Haitani, Y., Takagi, H., Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae (2008) Genes Cells, 13, pp. 105-116. , COI: 1:CAS:528:DC%2BD1cXis12gu7w%3D, PID: 18233954
  • Hayes, A., Zhang, N., Wu, J., Butler, P.R., Hauser, N.C., Hoheisel, J.D., Lim, F.L., Oliver, S.G., Hybridization array technology coupled with chemostat culture: Tools to interrogate gene expression in Saccharomyces cerevisiae (2002) Methods, 26, pp. 281-290. , COI: 1:CAS:528:DC%2BD38Xks1Ghurw%3D, PID: 12054884
  • Helliwell, S.B., Losko, S., Kaiser, C.A., Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease (2001) J Cell Biol, 153, pp. 649-662. , COI: 1:CAS:528:DC%2BD3MXjs1WgsL4%3D, PID: 11352928
  • Hirasawa, T., Yoshikawa, K., Nakakura, Y., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H., Shioya, S., Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis (2007) J Biotechnol, 131, pp. 34-44. , COI: 1:CAS:528:DC%2BD2sXns1ylu78%3D, PID: 17604866
  • Hoshikawa, C., Shichiri, M., Nakamori, S., Takagi, H., A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gap1 permease and stress-induced abnormal proteins (2003) Proc Natl Acad Sci U S A, 100, pp. 11505-11510. , COI: 1:CAS:528:DC%2BD3sXotFKmsbc%3D, PID: 14500784
  • Hoskisson, P.A., Hobbs, G., Continuous culture—making a comeback? (2005) Microbiology, 151, pp. 3153-3159. , COI: 1:CAS:528:DC%2BD2MXhtFeit77J, PID: 16207900
  • Huxley, C., Green, E.D., Dunham, I., Rapid assessment of S. cerevisiae mating type by PCR (1990) Trends Genet, 6, p. 236. , COI: 1:STN:280:DyaK3M%2FkvVymsA%3D%3D, PID: 2238077
  • Ingham, R.J., Gish, G., Pawson, T., The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture (2004) Oncogene, 23, pp. 1972-1984. , COI: 1:CAS:528:DC%2BD2cXitVOis7k%3D, PID: 15021885
  • Jarmoszewicz, K., Łukasiak, K., Riezman, H., Kaminska, J., Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants (2012) PLoS One, 7, p. e39582. , COI: 1:CAS:528:DC%2BC38XpsFylsbs%3D, PID: 22761830
  • Jiménez, J., Benítez, T., Genetic analysis of highly ethanol-tolerant wine yeasts (1987) Curr Genet, 12, pp. 421-428
  • Kaida, D., Toh-e, A., Kikuchi, Y., Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast (2003) Biochem Biophys Res Commun, 306, pp. 1037-1041. , COI: 1:CAS:528:DC%2BD3sXkvVCgsrg%3D, PID: 12821147
  • Kaliszewski, P., Zoładek, T., The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells (2008) Acta Biochim Pol, 55, pp. 649-662. , COI: 1:CAS:528:DC%2BD1MXht1Sktrk%3D, PID: 19039336
  • Kolkman, A., Olsthoorn, M.M.A., Heeremans, C.E.M., Heck, A.J.R., Slijper, M., Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol (2005) Mol Cell Proteomics, 4, pp. 1-11. , COI: 1:CAS:528:DC%2BD2MXhtleitro%3D, PID: 15502163
  • Kus, B., Gajadhar, A., Stanger, K., Cho, R., Sun, W., Rouleau, N., Lee, T., Rotin, D., A high throughput screen to identify substrates for the ubiquitin ligase Rsp5 (2005) J Biol Chem, 280, pp. 29470-29478. , COI: 1:CAS:528:DC%2BD2MXns1SlsrY%3D, PID: 15955809
  • Kutyna, D.R., Varela, C., Stanley, G.A., Borneman, A.R., Henschke, P.A., Chambers, P.J., Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production (2012) Appl Microbiol Biotechnol, 93, pp. 1175-1184. , COI: 1:CAS:528:DC%2BC38Xht1Wrur0%3D, PID: 21989563
  • Landry, C.R., Townsend, J.P., Hartl, D.L., Cavalieri, D., Ecological and evolutionary genomics of Saccharomyces cerevisiae (2006) Mol Ecol, 15, pp. 575-591. , COI: 1:CAS:528:DC%2BD28XjsVGnsL0%3D, PID: 16499686
  • Legras, J.-L., Karst, F., Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation (2003) FEMS Microbiol Lett, 221, pp. 249-255. , COI: 1:CAS:528:DC%2BD3sXjtlSlu7w%3D, PID: 12725935
  • Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760. , COI: 1:CAS:528:DC%2BD1MXot1Cjtbo%3D, PID: 19451168
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The sequence alignment/Map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079. , PID: 19505943
  • Liu, J., Sitaram, A., Burd, C.G., Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase (2007) Traffic, 8, pp. 1375-1384. , COI: 1:CAS:528:DC%2BD2sXhtFKms7rE, PID: 17645432
  • Lõoke, M., Kristjuhan, K., Kristjuhan, A., Extraction of genomic DNA from yeasts for PCR-based applications (2011) BioTechniques, 50, pp. 325-328. , PID: 21548894
  • Magasanik, B., Kaiser, C.A., Nitrogen regulation in Saccharomyces cerevisiae (2002) Gene, 290, pp. 1-18. , COI: 1:CAS:528:DC%2BD38Xktlart7Y%3D, PID: 12062797
  • Martínez-Moreno, R., Morales, P., Gonzalez, R., Mas, A., Beltran, G., Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source (2012) FEMS Yeast Res, 12, pp. 477-485. , PID: 22429249
  • McBryde, C., Gardner, J.M., de Barros, L.M., Jiranek, V., Generation of novel wine yeast strains by adaptive evolution (2006) Am J Enol Vitic, 57, pp. 423-430. , COI: 1:CAS:528:DC%2BD2sXhvFCgtrk%3D
  • Mortimer, R.K., Johnston, J.R., Genealogy of principal strains of the yeast genetic stock center (1986) Genetics, 113, pp. 35-43. , COI: 1:STN:280:DyaL283itFKltw%3D%3D, PID: 3519363
  • Mülleder, M., Capuano, F., Pir, P., Christen, S., Sauer, U., Oliver, S.G., Ralser, M., A prototrophic deletion mutant collection for yeast metabolomics and systems biology (2012) Nat Biotechnol, 30, pp. 1176-1178. , PID: 23222782
  • Neumann, S., Petfalski, E., Brügger, B., Grosshnas, H., Wieland, F., Tollervey, D., Jurt, E., Formation and nuclear exprot of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p (2003) EMBO Rep, 4, pp. 1156-1162. , COI: 1:CAS:528:DC%2BD3sXptlGksLk%3D, PID: 14608372
  • Novo, M., Mangado, A., Quirós, M., Morales, P., Salvadó, Z., Gonzalez, R., Genome-wide study of the adaptation of Saccharomyces cerevisiae to the proliferative stages of wine fermentation (2013) PLoS One, 8, p. e74086. , COI: 1:CAS:528:DC%2BC3sXhsVGiu77E, PID: 24040173
  • Ossareh-Nazari, B., Cohen, M., Dargemont, C., The Rsp5 ubiquitin ligase and the AAA-ATPase Cdc48 control the ubiquitin-mediated degradation of the COPII component Sec23 (2010) Exp Cell Res, 316, pp. 3351-3357. , COI: 1:CAS:528:DC%2BC3cXhtl2gu7zK, PID: 20846524
  • Oud, B., Van Maris, A.J.A., Daran, J.M., Pronk, J.T., Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast (2012) FEMS Yeast Res, 12, pp. 183-196. , COI: 1:CAS:528:DC%2BC38XjsV2gur4%3D, PID: 22152095
  • Pierce, S.E., Davis, R.W., Nislow, C., Giaever, G., Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures (2007) Nat Protoc, 2, pp. 2958-2974. , COI: 1:CAS:528:DC%2BD2sXhtlSlsr%2FO, PID: 18007632
  • Piggott, N., Cook, M.A., Tyers, M., Measday, V., (2011) Genome-wide fitness profiles reveal a requirement for autophagy during yeast fermentation, G3 (1), pp. 353-367
  • Piper, M.D.W., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J., Pronk, J.T., Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae (2002) J Biol Chem, 277, pp. 37001-37008. , COI: 1:CAS:528:DC%2BD38XnsVaqt7o%3D, PID: 12121991
  • Prelich, G., RNA Polymerase II carboxy-terminal domain kinases: emerging clues to their function (2002) Eukaryotic Cell, 1, pp. 153-162. , COI: 1:CAS:528:DC%2BD38XjtVOis7k%3D, PID: 12455950
  • Puig, S., Pérez-Ortín, J.E., Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift (2000) Yeast, 16, pp. 139-148. , COI: 1:CAS:528:DC%2BD3cXht1yrsrw%3D, PID: 10641036
  • Querol, A., Barrio, E., Huerta, T., Ramon, D., Molecular monitoring of wine fermentations conducted by active dry yeast strains (1992) Appl Environ Microbiol, 58, pp. 2948-2953. , COI: 1:CAS:528:DyaK38XmtFWhtb4%3D, PID: 16348768
  • Quirós, M., Martínez-Moreno, R., Albiol, J., Morales, P., Vázquez-Lima, F., Barreiro-Vázquez, A., Ferrer, P., Gonzalez, R., Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations (2013) PLoS One, 8, p. e71909. , PID: 23967264
  • Roberg, K.J., Bickel, S., Rowley, N., Kaiser, C.A., Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8 (1997) Genetics, 147, pp. 1569-1584. , COI: 1:CAS:528:DyaK1cXivFahtQ%3D%3D, PID: 9409822
  • Soetens, O., De Craene, J.O., André, B., Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1 (2001) J Biol Chem, 276, pp. 43949-43957. , COI: 1:STN:280:DC%2BD3MnmslKgtQ%3D%3D, PID: 11500494
  • Steinmetz, E.J., Conrad, N.K., Brown, D.A., Corden, J.L., RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts (2001) Nature, 413, pp. 327-331. , COI: 1:CAS:528:DC%2BD3MXnt1Kiu7o%3D, PID: 11565036
  • Trabalzini, L., Paffetti, A., Scaloni, A., Talamo, F., Ferro, E., Coratza, G., Bovalini, L., Santucci, A., Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae (2003) Biochem J, 370, pp. 35-46. , COI: 1:CAS:528:DC%2BD3sXhtVKkurw%3D, PID: 12401115
  • Trotter, E.W., Rand, J.D., Vickerstaff, J., Grant, C.M., The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant (2008) Biochem J, 412, pp. 73-80. , COI: 1:CAS:528:DC%2BD1cXltVyktbc%3D, PID: 18271751
  • Varela, C., Pizarro, F., Agosin, E., Biomass content governs fermentation rate in nitrogen-deficient wine musts (2004) Appl Environ Microbiol, 70, pp. 3392-3400. , COI: 1:CAS:528:DC%2BD2cXltFCit70%3D, PID: 15184136
  • Wang, S.A., Bai, F.Y., Saccharomyces arboricolus sp. nov., a yeast species from tree bark (2008) Int J Syst Evol Microbiol, 58, pp. 510-514. , COI: 1:CAS:528:DC%2BD1cXjtlegtbc%3D, PID: 18218959
  • Warringer, J., Blomberg, A., Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae (2003) Yeast, 20, pp. 53-67. , COI: 1:CAS:528:DC%2BD3sXnvVCnuw%3D%3D, PID: 12489126
  • Wong, C.M., Siu, K.L., Jin, D.Y., Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable (2004) J Biol Chem, 279, pp. 23207-23213. , COI: 1:CAS:528:DC%2BD2cXkt1Gisb4%3D, PID: 15051715
  • Wu, J., Zhang, N., Hayes, A., Panoutsopoulo, K., Oliver, S.G., Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation (2004) Proc Natl Acad Sci U S A, 101, pp. 3148-3153. , COI: 1:CAS:528:DC%2BD2cXitlWhtLg%3D, PID: 14973188
  • Yashiroda, H., Oguchi, T., Yasuda, Y., Toh-E, A., Kikuchi, Y., Bull, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae (1996) Mol Cell Biol, 16, pp. 3255-3263. , COI: 1:CAS:528:DyaK28XjvVWnsb0%3D, PID: 8668140
  • Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Snyder, M., Global analysis of protein activities using proteome chips (2001) Science, 293, pp. 2101-2105. , COI: 1:CAS:528:DC%2BD3MXntVCitr8%3D, PID: 11474067
  • Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Van 't Riet, K., Modeling of the bacterial growth curve (1990) Appl Environ Microbiol, 56, pp. 1875-1881. , COI: 1:STN:280:DC%2BC3crotFKrsg%3D%3D, PID: 16348228