Directional chebyshev-type methods for solving equations

Autor: Argyros, I.K.; Hernández Verón, Miguel Angel; Hilout, S.; Romero Alvarez, Natalia

Tipo de documento: Artículo de revista

Revista: Mathematics of Computation. ISSN: 0025-5718. Año: 2015. Número: 292. Volumen: 84. Páginas: 815-830.

JCR (datos correspondientes al año 2014):
Science  Área: MATHEMATICS, APPLIED  Quartil: Q1  Lugar área: 40/255  F. impacto: 1,491 

SCIMAGO (datos correspondientes al año 2014):
1,875  SNIP: 1,76 



  • An, H.-B., Bai, Z.-Z., Directional secant method for nonlinear equations (2005) J. Comput. Appl. Math., 175 (2), pp. 291-304
  • Argyros, I.K., On the Newton-Kantorovich hypothesis for solving equations (2004) J. Comput. Appl. Math., 169 (2), pp. 315-332
  • Argyros, I.K., A unifying local-semilocal convergence analysis and applications for twopoint Newton-like methods in Banach space (2004) J. Math. Anal. Appl., 298 (2), pp. 374-397
  • Argyros, I.K., Convergence and Applications of Newton-Type Iterations (2008)Argyros, I.K., A semilocal convergence analysis for directional Newton methods (2011) Math. Comp., 80 (273), pp. 327-343
  • Argyros, I.K., Cho, Y.J., Hilout, S., Numerical Methods for Equations and Its Applications (2012)Argyros, I.K., Ezquerro, J.A., Gutíerrez, J.M., Herńandez, M.A., Hilout, S., On the semilocal convergence of efficient Chebyshev-secant-type methods (2011) J. Comput. Appl. Math., 235 (10), pp. 3195-3206
  • Ben-Israel, A., Levin, Y., Maple programs for directional Newton methods, ,
  • Ezquerro, J.A., Herńandez, M.A., An optimization of Chebyshev's method (2009) J. Complexity, 25 (4), pp. 343-361
  • Levin, Y., Ben-Israel, A., Directional Newton methods in n variables (2002) Math. Comp., 71 (237), pp. 251-262
  • Lukács, G., The generalized inverse matrix and the surface-surface intersection problem (1989), pp. 167-185Ortega, J.M., Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in Several Variables (1970)Polyak, B.T., Introduction to Optimization (1987) Translations Series in Mathematics and Engineering
  • Potra, F.-A., On the convergence of a class of Newton-like methods (1982) Iterative solution of nonlinear systems of equations (Oberwolfach, 1982), Lecture Notes in Math., 953, pp. 125-137
  • Potra, F.A., Sharp error bounds for a class of Newton-like methods (1985) Libertas Math., 5, pp. 71-84
  • Walker, H.F., Watson, L.T., Least-change secant update methods for underdetermined systems (1990) SIAM J. Numer. Anal., 27 (5), pp. 1227-1262
  • Weerakoon, S., Fernando, T.G.I., A variant of Newton's method with accelerated third-order convergence (2000) Appl. Math. Lett., 13 (8), pp. 87-93