A Combinatorial Tool for Computing the Effective Homotopy of Iterated Loop Spaces

Autor: Romero Ibáñez, Ana; Sergeraert, F.; 

Tipo de documento: Artículo de revista

Revista: Discrete and Computational Geometry. ISSN: 0179-5376. Año: 2015. Número: 1. Volumen: 53. Páginas: 1-15.

Texto completo open access 

JCR (datos correspondientes al año 2014):
Science  Área: COMPUTER SCIENCE, THEORY & METHODS  Quartil: Q3  Lugar área: 69/102  F. impacto: 0,692 
Science  Área: MATHEMATICS  Quartil: Q2  Lugar área: 69/102  F. impacto: 0,692 

SCIMAGO (datos correspondientes al año 2014):
1,295  SNIP: 1,658 



  • May, J.P., (1967) Simplicial Objects in Algebraic Topology, , Van Nostrand Mathematical Studies, University of Chicago Press, Chicago
  • Goerss, P.G., Jardine, J.F., (1999) Simplicial Homotopy Theory, , Progress in Mathematics, 174, Birkhäuser, Basel
  • http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/, Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo Program. Institut Fourier, Grenoble (1999). Accessed December 201Bousfield, A.K., Kan, D.M., The homotopy spectral sequence of a space with coefficients in a ring (1972) Topology, 11, pp. 79-106
  • Real, P., An algorithm computing homotopy groups (1996) Math. Comput. Simul., 42, pp. 461-465
  • Bousfield, A.K., Kan, D.M., (1972) Homotopy Limits, Completions and Localizations, , Lecture Notes in Mathematics, 304, Springer, Berlin
  • Romero, A., Sergeraert, F., Effective homotopy of fibrations (2012) Appl. Algebra Eng. Commun. Comput., 23, pp. 85-100
  • Forman, R., Morse theory for cell complexes (1998) Adv. Math., 134, pp. 90-145
  • Romero, A., Sergeraert, F., Programming before theorizing, a case study (2012) International Symposium on Symbolic and Algebraic Computation, ISSAC 2012, pp. 289-296. , ACM, New York
  • arXiv:1005.5685v1, Romero, A., Sergeraert, F.: Discrete Vector Fields and fundamental Algebraic Topology (2010). Preprihttp://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Trieste-Lecture-Notes.pdf, Rubio, J., Sergeraert, F.: Introduction to Combinatorial Homotopy Theory (2008http://www.unirioja.es/cu/anromero/actcehilsev.pdf, Romero, A., Sergeraert, F.: A combinatorial tool for computing the effective homotopy of iterated loop spaces, extended version (2014). Preprint. Accessed December 201