Lyapunov stability for a generalized Hénon-Heiles system in a rotating reference frame

Autor: Iñarrea Las Heras, ManuelLanchares Barrasa, Víctor; Palacian, J.F.; Pascual Lería, Ana IsabelSalas Ilarraza, José Pablo; Yanguas, P.; 

Tipo de documento: Artículo de revista

Revista: Applied Mathematics and Computation. ISSN: 0096-3003. Año: 2015. Volumen: 253. Páginas: 159-171.

SCIMAGO (datos correspondientes al año 2014):
,958  SNIP: 1,378 



  • Arnold, V.I., The stability of the equilibrium position of a Hamiltonian system of ordinary differential equations in the general elliptic case (1961) Sov. Math. Dokl., 2, pp. 247-249
  • Barrabés, E., Ollè, M., Borondo, F., Farrelly, D., Mondelo, J.M., Phase space structure of a hydrogen atom in a circularly polarized microwave field (2012) Phys. D, 241, pp. 333-349
  • Bastos De Figueiredo, J.C., Grotta Ragazzo, C., Malta, C.P., Two important numbers in the Hénon-Heiles dynamics (1998) Phys. Lett. A, 241, pp. 35-40
  • Blesa, F., Seoane, J.M., Barrio, R., Sanjuán, M.A.F., To escape or not to escape, that is the question - Perturbing the Hénon-Heiles Hamiltonian (2012) Int. J. Bifurcation Chaos, 22, pp. 1230010-1230011
  • Brauer, F., Nohel, J.A., (1969) The Qualitative Theory of Ordinary Differential Equations: An Introduction, , Dover Publications Inc New York
  • Cabral, H.E., Meyer, K.R., Stability of equilibria and fixed points of conservative systems (1999) Nonlinearity, 12, pp. 1351-1362
  • Elipe, A., Lanchares, V., Pascual, A.I., On the stability of equilibria in two degrees of freedom Hamiltonian systems under resonances (2001) J. Nonlinear Sci., 15, pp. 305-319
  • Farrelly, D., Uzer, T., Ionization mechanism of Rydberg atoms in a circularly polarized microwave field (1995) Phys. Rev. Lett., 74 (10), pp. 1720-1723
  • Griffiths, J.A., Farrelly, D., Ionization of Rydberg atoms by circularly and elliptically polarized microwave fields (1992) Phys. Rev. A, 45, pp. R2678-R2681
  • Hénon, M., Heiles, C., The applicability of the third integral of motion: Some numerical experiments (1964) Astron. J., 69, pp. 73-79
  • Kawai, S., Bandrauk, A.D., Jaffé, C., Bartsch, T., Palacián, J., Uzer, T., Transition state theory for laser-driven reactions (2007) J. Chem. Phys., 126, p. 164306
  • Lanchares, V., Palacián, J., Pascual, A.I., Salas, J.P., Yanguas, P., Perturbed ion traps: A generalization of the three-dimensional Hénon-Heiles problem (2002) Chaos, 12, pp. 87-99
  • Lee, E., Brunello, A.F., Farrelly, D., Coherent states in a Rydberg atom: Classical mechanics (1997) Phys. Rev. A, 55, pp. 2203-2221
  • Lunsford, G.H., Ford, J., On the stability of periodic orbits for nonlinear oscillator systems in regions exhibiting stochastic behavior (1972) J. Math. Phys., 13, pp. 700-705
  • Markeev, A.P., Stability of a canonical system with two degrees of freedom in the presence of resonance (1968) Prikh. Mat. Mech., 32, pp. 738-744
  • Meyer, K.R., Hall, G., Offin, D., (2009) Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, , Springer Science + Business Media New York
  • Pollard, H., (1966) Mathematical Introduction to Celestial Mechanics, , Prentice-Hall Englewood Cliffs, N.J
  • Ramilowski, J.A., Prado, S.D., Borondo, F., Farrelly, D., Fractal Weyl law behavior in an open Hamiltonian system (2009) Phys. Rev. e, 80, p. 055201R
  • Siegel, C.L., Moser, J.K., (1995) Lectures on Celestial Mechanics, , Springer-Verlag Berlin Heidelberg
  • Vieira, W.M., Letelier, P.S., Chaos around a Hénon-Heiles inspired exact perturbation of a black hole (1996) Phys. Rev. Lett., 76, pp. 1409-1412
  • De Zeeuw, T., Merritt, D., Stellar orbits in a triaxial galaxy. I. Orbits in the plane of rotation (1983) Astrophys. J., 267, pp. 571-595