On some Montgomery's results on algebras with involution in superalgebras

Autor: Laliena Clemente, Jesús Antonio; Rizzo, R.; 

Tipo de documento: Artículo de revista

Revista: Journal of Algebra and its Applications. ISSN: 0219-4988. Año: 2014. Número: 2. Volumen: 13. Páginas: 1-11.

doi 10.1142/S0219498814500029Texto completo open access 

JCR:
Edición:
Science  Área: MATHEMATICS, APPLIED  Quartil: Q4  Lugar área: 223/255  F. impacto: 0,446 
Edición:
Science  Área: MATHEMATICS  Quartil: Q3  Lugar área: 223/255  F. impacto: 0,446 

SCIMAGO:
SJR:
,651  SNIP: ,815 

CIRC: GRUPO A

Referencias:

  • Elduque, A., Laliena, J., Sacristan, S., Maximal subalgebras of associative superalgebras (2004) J. Algebra, 275 (1), pp. 48-58
  • Gomez-Ambrosi, C., Shestakov, I., On the Lie structure of the skew elements of a simple superalgebra with superinvolution (1998) J. Algebra, 208, pp. 43-71
  • Herstein, I.N., On rings with involution (1974) Canad. J. Math, 26, pp. 794-799
  • Herstein, I.N., (1976) Rings with Involution, , The University of Chicago Press
  • Herstein, I.N., Montgomery, S., Invertible and regular elements in rings with involution (1973) J. Algebra, 25, pp. 390-400
  • Kac, V.G., Lie superalgebras (1977) Adv. Math, 26, pp. 8-96
  • Laliena, J., Rizzo, R., Superalgebras with superinvolution whose symmetric or skewsymmetric elements are regular Linear Multilinear Algebra, 9 (2013), pp. 1280-1286
  • Laliena, J., Sacristan, S., Regularity conditions on skew and symmetric elements in superalgebras with superinvolution J. Algebra, 323 (2010), pp. 2363-2370
  • Lanski, C., Rings with involution whose symmetric elements are regular (1972) Proc. Amer. Math. Soc, 33, pp. 264-270
  • Montaner, F., On the Lie structure of associative superalgebras (1998) Comm. Algebra, 26 (7), pp. 2337-2349
  • Montgomery, S., Rings with involution in which every trace is nilpotent or regular (1974) Canad. J. Math, 26, pp. 130-137
  • Montgomery, S., Rings of quotients for a class of special Jordan rings (1974) J. Algebra, 31, pp. 154-165
  • Montgomery, S., A structure theorem and a positive definiteness condition in rings with involution (1976) J. Algebra, 43 (1), pp. 181-192
  • Osborn, J.M., Jordan and associative rings with nilpotent and invertible elements (1970) J. Algebra, 15, pp. 301-308