Stability of equilibria for 2D resonant hamiltoian systems : a geometrical approach

Autor: Lanchares Barrasa, Víctor

Tipo de documento: Capítulo de libro

Libro: VII Jornadas Zaragoza-Pau de Matemática Aplicada y estadística : Jaca (Huesca), 17-18 de septiembre de 2001

Año: 2003  Páginas: 377-384

 Texto completo open access 

Resumen: The stability of an equilibrium point of a 2-D Hamiltonian system, in the presence of resonances, is decided by means of a geometrical criterium, when the corresponding quadratic part is not sign defined. It is proven that this method is the geometrical counterpart of a theorem of Cabral and Meyer which constitutes an extension of the Arnold's theorem.