Envolventes universales de álgebras de Sabinin

Autor: Madariaga Merino, Sara

Tipo de documento: Tesis

Director/es: Pérez Izquierdo, José María; Benkart, Georgia; 

Universidad: Universidad de La Rioja

Año: 2012 

Texto completo open access 

Resumen: En este trabajo se estudian las álgebras de Sabinin: estructura, envolventes universales y representaciones. Entre los resultados probados se encuentran los siguientes: -construcción de la envolvente universal de las álgebras de Malcev a través de la generalización del concepto de grupos y álgebras de Lie con trialdad al contexto de álgebras de Hopf. -rigidez de la envolvente universal del álgebra de Malcev simple central 7-dimensional: toda deformación coasociativa es coconmutativa y no existen deformaciones no triviales coasociativas verificando la identidad de Moufang-Hopf. -estudio de las identidades que definen la variedad de las álgebras tangentes a lazos monoasociativos, una variedad de álgebras de Sabinin que generaliza las álgebras de Lie, Malcev y Bol. -extensión a característica arbitraria del resultado de Pojidaev que afirma que para n>=3 no existen álgebras de Leibniz n-arias conmutativas simples. -introducción de una teoría de representación de biálgebras en términos de categorías usando la teoría de módulos para cuasigrupos y las equivalencias entre las categorías de lazos formales y álgebras de Sabinin. -aplicación de la teoría anterior al caso de lazos de Moufang y álgebras de Malcev y generalización de dicha teoría para obtener nuevos ejemplos de módulos. -cálculo de una fórmula de tipo Weyl para la dimensión de los módulos para sistemas triples de Lie simples y clasificación de los módulos de dimensión 1 para dichos sistemas.